Use of sonic waves in bubble formation, microhardness and fluoride release of a high‐viscosity glass‐ionomer cement

2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Nallu Gomes Lima Hironaka ◽  
Juliana Quintino Trizzi ◽  
Natália Miwa Yoshida ◽  
Jaime Aparecido Cury ◽  
Cinthia Pereira Machado Tabchoury ◽  
...  
2017 ◽  
Vol 41 (4) ◽  
pp. 264-270 ◽  
Author(s):  
Eliyahu Tal ◽  
Ari Kupietzky ◽  
Anna B Fuks ◽  
Nili Tickotsky ◽  
Moti Moskovitz

Objectives: The present preliminary study evaluated the clinical and radiographic performances of heat-cured high viscosity glass ionomer (HCHVGI) in class II restorations of primary molars. Study design: A retrospective study on a cohort of patients who had dental caries restored at a private practice was conducted. Restorations were evaluated radiographically and photographically by two separate examiners. Results: Ninety-three Class II restorations in 44 patients (average age: 108 months ± 25.3, 24 males, 20 females) were examined. Average recall time was 22.2 months ± 4.2. All but three restorations (96.8%) were present and intact, with no incidents of secondary caries. Three additional restorations had occlusal defects that required retreatment, resulting in an overall success rate of 93.5%. Ninety-seven percent of the restorations were rated optimal for marginal integrity with no staining of the restoration surfaces. No patients complained of post-operative sensitivity. The most common flaw found was a concavity on the proximal wall of the cavity box (27%, mean age 16 months ± 3.9). Conclusion: The findings in this preliminary study suggest that heat cured high viscosity glass ionomer cement may be an effective restorative material for Class II restorations in primary molars that are a year or two from shedding.


1998 ◽  
Vol 2 (3) ◽  
pp. 143-146 ◽  
Author(s):  
W. Geurtsen ◽  
P. Bubeck ◽  
G. Leyhausen ◽  
F. Garcia-Godoy

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Daniela Dellosso Cibim ◽  
Miki Taketomi Saito ◽  
Priscila Alves Giovani ◽  
Ana Flávia Sanches Borges ◽  
Vanessa Gallego Arias Pecorari ◽  
...  

The aim of this study was to assess the performance of glass ionomer cement (GIC) added with TiO2nanotubes. TiO2nanotubes [3%, 5%, and 7% (w/w)] were incorporated into GIC’s (Ketac Molar EasyMix™) powder component, whereas unblended powder was used as control. Physical-chemical-biological analysis included energy dispersive spectroscopy (EDS), surface roughness (SR), Knoop hardness (SH), fluoride-releasing analysis, cytotoxicity, cell morphology, and extracellular matrix (ECM) composition. Parametric or nonparametric ANOVA were used for statistical comparisons (α≤0.05). Data analysis revealed that EDS only detected Ti at the 5% and 7% groups and that GIC’s physical-chemical properties were significantly improved by the addition of 5% TiO2as compared to 3% and GIC alone. Furthermore, regardless of TiO2concentration, no significant effect was found on SR, whereas GIC-containing 7% TiO2presented decreased SH values. Fluoride release lasted longer for the 5% and 7% TiO2groups, and cell morphology/spreading and ECM composition were found to be positively affected by TiO2at 5%. In conclusion, in the current study, nanotechnology incorporated in GIC affected ECM composition and was important for the superior microhardness and fluoride release, suggesting its potential for higher stress-bearing site restorations.


Sign in / Sign up

Export Citation Format

Share Document