knoop hardness
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 31)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Igor Oliveiros Cardoso ◽  
Alexandre Coelho Machado ◽  
Luísa de Oliveira Fernandes ◽  
Paulo Vinícius Soares ◽  
Luís Henrique Araújo Raposo

Abstract Objective The aim of this study was to evaluate the influence of different light-curing units (LCUs) with distinct tip diameters and light spectra for activating bulk-fill resins. Materials and Methods The specimens (n = 10) were made from a conventional composite (Amaris, VOCO) and bulk-fill resins (Aura Bulk Fill, SDI; Filtek One, 3M ESPE; Tetric Bulk Fill, Ivoclar Vivadent) with two diameters, 7 or 10 mm, × 2 mm thickness. Following 24 hours of specimen preparation, the degree of conversion (DC) was evaluated using the Fourier-transform infrared unit. Knoop hardness (KHN) readings were performed on the center and periphery of the specimens. Data were assessed for homoscedasticity and submitted to one-way and three-way analysis of variance followed by the Tukey's and Dunnett's tests, depending on the analysis performed (α = 0.05). Results LCUs and specimen diameter significantly affected the DC. The Tetric Bulk Fill provided increased DC results when light-cured with Valo (54.8 and 53.5%, for 7 and 10 mm, respectively) compared with Radii Xpert (52.1 and 52.9%, for 7 and 10 mm, respectively). No significant differences in KHN results were noted for the conventional resin composite (Amaris) compared with LCUs (p = 0.213) or disc diameters (p = 0.587), but the center of the specimen exhibited superior KHN (p ≤ 0.001) than the periphery. Conclusion The light spectrum of the multipeak LCU (Valo) significantly increased the DC and KHN of the bulk-fill resin composite with additional initiator to camphorquinone (Tetric Bulk Fill) compared with the monowave LCU (Radii Xpert). The tip size of the LCUs influenced the performance of some of the resin composites tested.


2021 ◽  
Vol 118 (47) ◽  
pp. e2108340118
Author(s):  
Yilong Pan ◽  
Pan Ying ◽  
Yufei Gao ◽  
Peng Liu ◽  
Ke Tong ◽  
...  

Mechanical properties of covalent materials can be greatly enhanced with strategy of nanostructuring. For example, the nanotwinned diamond with an isotropic microstructure of interweaved nanotwins and interlocked nanograins shows unprecedented isotropic mechanical properties. How the anisotropic microstructure would impact on the mechanical properties of diamond has not been fully investigated. Here, we report the synthesis of diamond from superaligned multiwalled carbon nanotube films under high pressure and high temperature. Structural characterization reveals preferentially oriented diamond nanotwin bundles with an average twin thickness of ca. 2.9 nm, inherited from the directional nanotubes. This diamond exhibits extreme mechanical anisotropy correlated with its microstructure (e.g., the average Knoop hardness values measured with the major axis of the indenter perpendicular and parallel to nanotwin bundles are 233 ± 8 and 129 ± 9 GPa, respectively). Molecular dynamics simulation reveals that, in the direction perpendicular to the nanotwin bundles, the dense twin boundaries significantly hinder the motion of dislocations under indentation, while such a resistance is much weaker in the direction along the nanotwin bundles. Current work verifies the hardening effect in diamond via nanostructuring. In addition, the mechanical properties can be further tuned (anisotropy) with microstructure design and modification.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1811
Author(s):  
Yuntao Xi ◽  
Lin Wan ◽  
Jungang Hou ◽  
Zhiyong Wang ◽  
Lei Wang ◽  
...  

In this paper, a pragmatic technique has been developed to evaluate the erosion-corrosion behavior of three kinds of ZrN coatings (i.e., monolayer, multilayer, and gradient layers) which were deposited on AISI 420 martensitic stainless steel using an ion-assisted deposition technology. Among them, the monolayer coating refers to the coating with no change in composition and structure, the multilayer coating refers to the coating with alternating change of Zr/ZrN, and the gradient coating refers to the ZrN coating by increasing N2 partial pressure gradually. The morphology, composition, and microhardness of these ZrN coatings were examined by means of integrating the scanning electron microscopy (SEM), X-ray diffraction (XRD), and Knoop hardness measurements, while anodic polarization tests and salt fog spray tests in a simulated industrial environment have been performed to evaluate and identify the corrosion mechanisms of these coatings. The surface microhardness and corrosion resistance of the AISI420 martensitic stainless steel is found to be significantly improved by depositing the ion-assisted deposition ZrN coatings. The study indicates that the erosion-corrosion behavior in the slurry is the result of the synergistic effect of small-angle erosion and acid solution corrosion. Three ZrN coatings hinder the slurry erosion-corrosion behavior from two aspects (i.e., erosion resistance of small-angle particles as well as corrosion resistance of the substrate), thereby significantly improving the erosion-corrosion resistance of AISI 420 stainless steel. In addition, the ZrN gradient coatings show a much better erosion-corrosion resistance than that of the monolayer/multilayer ZrN coating because they have excellent crack resistance, bearing capacity, and electrochemical performance.


Author(s):  
J. Merced MARTÍNEZ-VÁZQUEZ ◽  
Gabriel RODRÍGUEZ-ORTIZ ◽  
J. Gregorio HORTELANO-CAPETILLO ◽  
Arnulfo PÉREZ-PÉREZ

AISI 1045 steel is a steel of medium carbon, widely used in machinery, the automotive industry, and the food industry, among others. Therefore, to fulfill its purpose, it is necessary to improve its mechanical resistance, wear resistance and resistance to fatigue through different surface heat treatments. Variables such as heating time and hence speed affect the thickness of the hardened layer and the microstructural characteristics of the area affected by heat treatment. The inspection of the transformation of phases during the treatment and the thickness of the boundary layer is generated by determining the hardness of the material, whose procedure is subject to the ASTM E92-17 and E384-17standards, which establish the methodology to be followed. Therefore, the objective of this work is to quantify the effect of three heating times at 1123 K on the hardening of AISI 1045 steel and the regularity of the hardened layer to ensure its functionality as a component subjected to friction, in addition to developing a table of equivalences between the Knoop (HK), Vickers (HK) and Rockwell C (HRC) hardness scales.


Resources ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 42
Author(s):  
Beata Figarska-Warchoł ◽  
Marek Rembiś

The sandstones with a laminated structure are common building materials. Lamination is macroscopically expressed as colour and grain size variations observed both in the deposit and within individual beds; therefore, the properties of such sandstones are diverse depending on the spatial distribution of the binding mass and framework components. For the terrestrial sandstones of different genesis, four types of laminae have been distinguished based on petrographic studies. They have a siliceous binder or a mixed ferruginous–siliceous–argillaceous binder with different proportions of these components. In laminae of types I–III, the grain framework is built mainly of quartz grains, and in type IV, it is accompanied by numerous lithoclasts and feldspars. Knoop hardness and CERCHAR abrasivity were tested in each lamina variety, and the results were correlated with the equivalent quartz content and the longitudinal ultrasonic wave velocity measured perpendicular and parallel to the lamination. The proposed research methodology was not used in previous studies on terrestrial laminated sandstones. The results explain a strong dependence between mineral composition, structure of laminae, and technical parameters of rocks. The knowledge of this relationship facilitates the selection of rocks that meet the relevant technical requirements and helps to optimally manage the resources of sandstone deposits.


Author(s):  
Hatem M. El-Damanhoury ◽  
Nesrine A. Elsahn ◽  
Soumya Sheela ◽  
Talal Bastaty

Abstract Objectives This study aimed to evaluate the effect of in-office bleaching on the enamel surface and the efficacy of calcium silicate-sodium phosphate-fluoride salt (CS) and NovaMin bioactive glass (NM) dentifrice in remineralizing bleached enamel. Materials and Methods Forty extracted premolars were sectioned mesio-distally, and the facial and lingual enamel were flattened and polished. The samples were equally divided into nonbleached and bleached with 38% hydrogen peroxide (HP). Each group was further divided according to the remineralization protocol (n = 10); no remineralization treatment (nontreated), CS, or NM, applied for 3 minutes two times/day for 7 days, or CS combined with NR-5 boosting serum (CS+NR-5) applied for 3 minutes once/day for 3 days. The average Knoop hardness number (KHN) and surface roughness (utilizing atomic force microscopy) were measured. Surface topography/elemental analysis was analyzed by using scanning electron microscopy/energy dispersive X-ray analysis. All the tests were performed at baseline, after bleaching, and following each remineralization protocol. Data were statistically analyzed by two-way analysis of variance and Bonferroni post hoc multiple comparison tests (α = 0.05). Results HP significantly reduced KHN and increased roughness (p < 0.05). All remineralization materials increased the hardness and reduced the surface roughness after bleaching except NM, which demonstrated significantly increased roughness (p < 0.05). Ca/P ratio decreased after bleaching (p < 0.05), and following treatment, CS and CS+NR-5 exhibited higher remineralization capacity in comparison to NM (p < 0.05). Conclusion Although none of the material tested was able to reverse the negative effect of high-concentration in-office HP on enamel completely, the remineralization efficacy of CS and CS+NR-5 was superior to that of NM.


Author(s):  
Aurealice Rosa Maria Martins ◽  
Luciana Machado-Santos ◽  
Regis Cleo Fernandes Grassia ◽  
Rafael Pino Vitti ◽  
Mário Alexandre Coelho Sinhoreti ◽  
...  

Abstract Objectives The aim of this study was to evaluate the Knoop hardness (KH), cross-link density (CLD), water sorption (WS), water solubility (WSB), and volumetric shrinkage (VS) of experimental resins blends containing a monomethacrylate with low-polymerization shrinkage. Materials and Methods A blend of bisphenol glycidyl methacrylate (BisGMA) as base monomer was formulated with (Bis-GMA)/triethyleneglycol dimethacrylate (TEGDMA), Bis-GMA/isobornyl methacrylate (IBOMA), or Bis-GMA/TEGDMA/IBOMA in different concentrations (40, 50, or 60 wt%). The camphorquinone (CQ)/2-(dimethylamino) ethyl methacrylate (DMAEMA) was used as the photoinitiator system. The KH and CLD were measured at the top surface using an indenter. For WS and WSB, the volume of the samples was calculated in mm3. The samples were transferred to desiccators until a constant mass was obtained (m1) and were subsequently immersed in distilled water until no alteration in mass was detected (m2). The samples were reconditioned to constant mass in desiccators (m3). WS and WSB were determined using the equations m2 − m3/V and m1 − m3/V, respectively. VS results were calculated with the density parameters before and after curing. Statistical Analysis Data were submitted to ANOVA and Tukey’s test (α = 0.05). Results The resins containing IBOMA showed lower VS results. TEGDMA 40% and TEGDMA/IBOMA 20/20 wt% showed higher KH values. The IBOMA groups showed lower CLD, while TEGDMA groups had higher values of CLD. The BisGMA/TEGDMA resin presented the highest values of WS, and for WSB, all groups showed no significant differences among themselves. Conclusion The monomethacrylate with low-polymerization shrinkage IBOMA used alone or in combination with TEGDMA may decrease VS, WS, and CLD values.


Sign in / Sign up

Export Citation Format

Share Document