scholarly journals USE OF WASTE POLYESTER FIBERS TO ENHANCE RUTTING RESISTANCE OF ASPHALT CONCRETE MIXTURES

Author(s):  
A. El-Desouky ◽  
A. Abbas ◽  
L. Radwan ◽  
O. Moursi
2021 ◽  
Vol 2 (6 (110)) ◽  
pp. 61-70
Author(s):  
Valeriy Zhdaniuk ◽  
Oleksandr Volovyk ◽  
Dmytro Kostin ◽  
Sergey Lisovin

The effect of modification of asphalt concrete mixtures of different grain sizes with “Ric-Polycell” (Ukraine) and “Duroflex®-SMA” thermoplastic polymers (Germany), which were added directly to the asphalt mixer during their preparation, on the properties of asphalt concrete was studied. It is confirmed that it is more expedient to use stone mastic asphalt concretes with a larger size of mineral crushed stone grains on high-traffic roads, as they are more rutting-resistant compared to asphalt concretes with smaller size and content of crushed stone grains. The effect of the temperature of preparation and thermostating of asphalt concrete mixtures modified with the investigated thermoplastics on the compressive strength of asphalt concrete at a temperature of 50 °С, which were made of the studied mixtures, was investigated. It was found that the maximum possible temperatures of preparation and thermostating of asphalt concrete mixes provide a more complete modification. The effect of the content of thermoplastic polymers in the composition of asphalt concrete mixtures on the properties and rutting resistance of fine-grained asphalt concrete, as well as stone mastic asphalt concrete, was studied. It was found that adding the “Ric-Polycell” polymer in the amount of 1.5 % and 3 % by weight of bitumen in the composition of the studied asphalt mixtures in the asphalt mixer during their preparation increases the rutting resistance of asphalt concrete under the studied conditions by 2.52–3.86 times. Modification of asphalt concrete mixtures with the “Duroflex®-SMA” additive in the amount of 0.3 % and 0.6 % by weight of the aggregate by a similar technology also allows increasing the rutting resistance of the obtained asphalt concrete by 1.86–3.16 times. Using these modifiers in the future will have a positive effect on the service life of the entire pavement structure


2021 ◽  
Vol 2131 (4) ◽  
pp. 042039
Author(s):  
G Provatorova ◽  
K Ryabinina

Abstract A significant increase in traffic intensity and increased axle loads of vehicles on the roads led to the fact that asphalt concrete is not able to provide the required durability of road surfaces. The durability of asphalt concrete pavements is directly related to the quality of the materials used, primarily bitumen. Bitumen is most susceptible to changes under the influence of traffic loads and weather conditions. At the same time, bitumen largely determines the condition of the road surface. The behavior of bitumen can be changed by modifying it with additives. The novelty of bitumen modification lies in the fact that the addition of polymer to bitumen makes it possible to obtain a road surface that is resistant to cracking at low temperatures and to provide fatigue strength at high temperatures. Rutting resistance is also achieved. An important role in the choice of the modifier is played by economic issues related to the rise in the cost of coating, as well as the need to use additional equipment, the stability of the modified binder during storage and transportation, etc. Carbon nanotubes (CNTs) were used as a modifier for asphalt concrete mixtures. During the experiment, a significant improvement in the main indicators of asphalt concrete mixtures was revealed, as well as the maximum permissible deviations for the amount of binder in the asphalt concrete mixture and for the main indicators were observed. Moreover, the most important thing that has been achieved is a significant increase in rutting resistance by rolling a loaded wheel.


Sign in / Sign up

Export Citation Format

Share Document