scholarly journals PERFORMANCE ANALYSIS FOR PARALLEL IMAGE PROCESSING ALGORITHM USING TRANSPUTERS

1998 ◽  
Vol 1 (1) ◽  
pp. 446-455
Author(s):  
S. Bahgat ◽  
S. Ghoniemy ◽  
R. Agam
Author(s):  
A Sathesh ◽  
Edriss Eisa Babikir Adam

Image thinning is the most essential pre-processing technique that plays major role in image processing applications such as image analysis and pattern recognition. It is a process that reduces a thick binary image into thin skeleton. In the present paper we have used hybrid parallel thinning algorithm to obtain the skeleton of the binary image. The result skeleton contains one pixel width which preserves the topological properties and retains the connectivity.


1998 ◽  
Vol 08 (01) ◽  
pp. 63-76 ◽  
Author(s):  
J. Mattes ◽  
D. Trystram ◽  
J. Demongeot

This paper describes the implementation of a parallel image processing algorithm, the aim of which is to give good contrast enhancement in real time, especially on the boundaries of an object of interest defined by a grey homogeneity (for example, an object of medical interest having a functional or morphologic homogeneity, like a bone or tumor). The implementation of a neural network algorithm which does this contrast enhancement has been done on a SIMD massively parallel machine (a MasPar of 8192 processors) and the communication between its processors has been optimized.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Soo Hyun Park ◽  
Sang Ha Noh ◽  
Michael J. McCarthy ◽  
Seong Min Kim

AbstractThis study was carried out to develop a prediction model for soluble solid content (SSC) of intact chestnut and to detect internal defects using nuclear magnetic resonance (NMR) relaxometry and magnetic resonance imaging (MRI). Inversion recovery and Carr–Purcell–Meiboom–Gill (CPMG) pulse sequences used to determine the longitudinal (T1) and transverse (T2) relaxation times, respectively. Partial least squares regression (PLSR) was adopted to predict SSCs of chestnuts with NMR data and histograms from MR images. The coefficient of determination (R2), root mean square error of prediction (RMSEP), ratio of prediction to deviation (RPD), and the ratio of error range (RER) of the optimized model to predict SSC were 0.77, 1.41 °Brix, 1.86, and 11.31 with a validation set. Furthermore, an image-processing algorithm has been developed to detect internal defects such as decay, mold, and cavity using MR images. The classification applied with the developed image processing algorithm was over 94% accurate to classify. Based on the results obtained, it was determined that the NMR signal could be applied for grading several levels by SSC, and MRI could be used to evaluate the internal qualities of chestnuts.


2014 ◽  
Author(s):  
Kevin Vincent ◽  
Damien Nguyen ◽  
Brian Walker ◽  
Thomas Lu ◽  
Tien-Hsin Chao

Sign in / Sign up

Export Citation Format

Share Document