soluble solid content
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 161)

H-INDEX

18
(FIVE YEARS 6)

2022 ◽  
Author(s):  
HALIL IBRAHIM OZTURK

Abstract BackroundTurkey is a country with different geographical features and therefore it is extremely diverse in plant diversity. Tomato is one of the most important vegetables produced both in the world and in Turkey. In this study, it was aimed to determine the genetic diversity of 24 tomato genotypes collected from local farmers from “Center villages” and “Üzümlü” district in Erzincan province.Methods and ResultsMorphological (qualitative and quantitative) and molecular markers (ISSR) were used to determine genetic diversity among genotypes. Genotype 24 was found to be higher than other genotypes with important quantitative morphological features such as fruit length, fruit width, fruit weight and soluble solid content (SSC). Considering the overall morphological traits, a wide variation was detected between genotypes. According to the molecular findings obtained. The polymorphism rate ranged from 0–100% and the average polymorphism rate was calculated as 80%.ConclusionPresent findings revealed the diversity in tomato genotypes collected from Erzincan province and may constitute the bases for further breeding studies in tomato and will bring an integrity in tomato identification studies.


2022 ◽  
Vol 82 ◽  
Author(s):  
N. Karatas

Abstract Summer apples are one of the most important plant community in Artvin province located Northeastern part of Turkey. In present study 22 local apple genotypes were characterized by phenological, morphological, biochemical and sensory properties. Harvest date was the main phenological data. Morphological measurements included fruit weight, fruit shape, fruit ground color, fruit over color, fruit over color coverage and fruit firmness, respectively. Sensory measurements were as juiciness and aroma and biochemical characteristics included organic acids, SSC (Soluble Solid Content), vitamin C, total phenolic content and antioxidant capacity. Genotypes exhibited variable harvest dates ranging from 11 July to 13 August and cv. Summered harvested 30 July 2017. The majority of genotypes were harvested before cv. Summered. Fruit weight were also quite variable among genotypes which found to be between 89 g and 132 g, and most of the genotypes had bigger fruits than cv. Summered. Pink, red, yellow and green fruit skin color was evident and main fruit shape were determined as round, conic and oblate among genotypes. ART08-9, ART08-4, ART08-21 and ART08-22 had distinct bigger fruits and ART08-1, ART08-2, ART08-5, ART08-12 and ART08-17 had higher total phenolic content and antioxidant capacity. The results of the study showed significant differences for most of the phenological, morphological, sensory and biochemical characteristics. Thus, the phonological, morphological, sensory and biochemical characteristics of summer apple genotypes were distinguishable and these results suggest that phonological, morphological, sensory and biochemical differences of the summer apple genotypes can be attributed to differences in genetic background of genotypes which placed different groups by PCoA analysis.


2021 ◽  
Vol 9 (3) ◽  
pp. 103-110
Author(s):  
Ayu Putri Ana ◽  
Y. Aris Purwanto ◽  
Slamet Widodo

“Crystal” guava (Psidium guajava L.) is a climacteric fruit that is generally harvested by farmers based on cultivation experience. In this study, portable 740-1070 nm of near-infrared spectrometer was employed to rapidly predict harvest indices of “crystal” guava, by means of non-contact and non-destructive approach. Samples of guava fruit were collected at days after anthesis (DAS) of 91, 94, 97, and 100. The total number of each sample were 30 fruits. The firmness, soluble solid content, acidity and sugar acid ration were evaluated as quality parameters. Partial least square (PLS) method was utilized for data processing. It was found that Standard Normal Variate (SNV) resulted the best pre-processing for all quality parameters. Performances of best models were demonstrated by coefficient of corraltion (R), standard error of calibration (SEC) and standard error of prediction (SEP), which were respectively 0.88, 6.21, 5.92 for firmness prediction, 0.74, 0.84, 0.79 for soluble solid content prediction, 0.59, 0.19, 0.26 for acidity prediction, and 0.71, 1.21, 1.58 for sugar acid ratio prediction model.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3135
Author(s):  
Yu Li ◽  
Yu Zhou ◽  
Zhouli Wang ◽  
Rui Cai ◽  
Tianli Yue ◽  
...  

Chitosan is widely used as a natural preservative of fruits and vegetables, but its poor mechanical and water resistances have limited its application. Therefore, in this study, we prepared chitosan composite films by incorporating different amounts of nano-zinc oxide (nano-ZnO) to improve the mechanical properties of chitosan. We also assessed the antibacterial activity of these films against selected microorganisms. The addition of nano-ZnO improved the tensile strength (TS) and elongation at break (EAB) of the chitosan films and reduced their light transmittance. TS and EAB increased from 44.64 ± 1.49 MPa and 5.09 ± 0.38% for pure chitosan film to 46.79 ± 1.65 MPa and 12.26 ± 0.41% for a 0.6% nano-ZnO composite film, respectively. The ultraviolet light transmittance of composite films containing 0.2%, 0.4%, and 0.6% nano-ZnO at 600 nm decreased from 88.2% to 86.0%, 82.7%, and 81.8%, respectively. A disc diffusion test showed that the composite film containing 0.6% nano-ZnO had the strongest antibacterial activity against Alicyclobacillus acidoterrestris, Staphylococcus aureus, Escherichia coli, and Salmonella. In a 15-day preservation study, chitosan composite films containing 0.6% nano-ZnO maintained the soluble solid content of cherry tomatoes, effectively inhibited their respiration, and exhibited good antibacterial properties against the selected microorganisms. Overall, the prepared chitosan nano-ZnO composite film showed a good preservation effect on cherry tomatoes.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 581
Author(s):  
Roberta Passafiume ◽  
Giovanni Gugliuzza ◽  
Raimondo Gaglio ◽  
Gabriele Busetta ◽  
Ilenia Tinebra ◽  
...  

Pear fruits are known for their antioxidant and nutritional characteristics. However, they are very susceptible to rapid decay. Edible coating (EC) represents a good strategy to maintain postharvest quality. The effects of two EC in slowing down the senescence processes in fresh-cut ‘Coscia’ pears were investigated: EC1 (A. vera gel, hydroxypropyl-methylcellulose and pomegranate seeds oil (PSO), EC2 (A. vera gel and hydroxypropyl-methylcellulose). Weight loss, firmness and colour decrease more slowly in both EC-treated than in untreated (CTR) slices; soluble solid content increases faster in CTR, indicating a faster ripening process. The specific investigation of undesired microorganisms did not generate any colony in all analysed samples. Sensory analysis confirmed that the tasters preferred the EC2-treated samples, as they were the only ones that did not show undesirable flavours until the last day of storage.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
M. S. Aboryia ◽  
A. A. Lo’ay ◽  
Asmaa S. M. Omar

Abstract Cold storage is used to improve the efficiency of storage and handling of orange fruits, but the fruits are exposed to chilling injury (CI). Antioxidant enzymes are part of the antioxidant defence system against CI of ‘Washington’ oranges during cold storage, which controls storage/handling efficiency. In this study, melatonin (ME) was used on fruits to reduce cold damage. To assess the action of ME influences; fruits were picked from the tree at the commercial maturity stage and divided into two groups that were uniform in size and colour. Then, they were immersed in ME solution at 0 mmol, 10 mmol, 100 mmol or 1,000 mmol for 20 min at 20 ± 1 °C. The treated fruits were stored at 4 ± 1 °C and 95 ± 1% RH for 4 weeks during 2019 and 2020 seasons. The physical and chemical characteristics of the stored fruits were measured every week up to the end of the storage period. Results indicated that immersing fruits in 1,000 μM ME minimised the CI-index and the water loss%, while preserving the orange peel colour (h°) during cold storage. On the other hand, the same treatment caused slight changes in soluble solid content (SSC%), maintained ascorbic acid (AA) content and the stability of total acidity (TA%), enhanced the antioxidant enzymes activities (AEAs) such as ascorbate peroxidase (APX), catalase (CAT), and superoxidase dismutase (SOD) and also reduced the rate of malondialdehyde (MDA) and ion leakage (IL) during cold storage. Moreover, it minimised hydrogen peroxide (H2O2) and superoxide anion (O2 •−) production and caused pronounced results to be exhibited in antioxidant capacity. Overall, the 1,000 μM ME treatment for orange fruits afforded more tolerance against cold storage stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Magdalena Drobek ◽  
Justyna Cybulska ◽  
Anna Gałązka ◽  
Beata Feledyn-Szewczyk ◽  
Anna Marzec-Grządziel ◽  
...  

As the market indicates a growing interest in organically grown fruit, there is a need for biostimulants to counter the adverse effects of pathogenic fungi and fungal-like-pathogens. Four microbial pathogens (Botrytis cinerea, Verticillium sp., Phytophthora sp., and Colletotrichum sp.) which are the most often causes of strawberry diseases were selected. Five kinds of biostimulants (C1, C2, C3, C4, and C5) containing bacterial consortia were developed to combat the pathogens. The antagonistic effect of selected microorganisms against strawberry pathogens was observed. The effectiveness of various beneficial bacteria in combating fungal pathogens of cv. Honeoye strawberries was compared and the impact of their activity on fruit quality was assessed. The most significant effect on the strawberry firmness was found for the C2 consortium, which provided the strawberries infected with the pathogens group (MIX: B. cinerea, Verticillium sp., Phytophthora sp., and Colletotrichum sp.) with a 140% increase in maximum load in a puncture test compared to the positive control (C0). Strawberries contaminated with Phytophthora sp. after the application of Consortium C4 (C4) showed the largest increase (127%) in soluble solid content (SSC) when compared to the C0. Fruit contaminated with Colletotrichum sp. and B. cinerea after the application of C2 and Consortium 5 (C5), respectively, had the highest levels of anthocyanins and total phenolic content, when compared to C0. The largest increase, which reached as high as 25%, in D-galacturonic acid content was observed for the group of pathogens after Consortium 1 (C1) application. The extraction of strawberry pectin allowed for the study of the rheological properties of pectin solutions; on this basis, strawberry pectin from the control (NC) was distinguished as it showed the highest viscosity (0.137–0.415 Pas). Taking into account the individual effects of bacteria on strawberry pathogenic fungi and fungal-like-pathogens, it is possible to reduce the adverse effects of fungal disease and to improve the properties of strawberries by selecting the appropriate bacterial consortium. Interactions between microorganisms are often complex and not fully understood, which suggests the need for further research in this direction.


Sign in / Sign up

Export Citation Format

Share Document