scholarly journals Soft starter of an induction motor using adaptive neuro fuzzy inference system and back propagation based feedback estimator

2008 ◽  
Vol 6 (6) ◽  
pp. 1-13
Author(s):  
Muhammad Saqib ◽  
Syed Kashif
Author(s):  
Masumeh Sabet ◽  
Mehdi Naseri ◽  
Hosein Sabet

Prediction of littoral drift with Adaptive Neuro-Fuzzy Inference System The amount of sand moving parallel to a coastline forms a prerequisite for many harbor design projects. Such information is currently obtained through various empirical formulae. Despite so many works in the past, an accurate and reliable estimation of the rate of sand drift has still remained a problem. It is a non-linear process and can be described by chaotic time-series. The current study addresses this issue through the use of Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is about taking an initial fuzzy inference system (FIS) and tuning it with a back propagation algorithm based on the collection of input-output data. ANFIS was developed to predict the sand drift from a variety of causative variables. The structure and algorithm of ANFIS for predicting the rate of sand drift is described. The Adaptive Neuro-Fuzzy Inference System was validated by confirming its consistency with a database of specified physical process.


2021 ◽  
Author(s):  
asghar dabiri ◽  
Nader Jafarnia Dabanloo ◽  
Fereidoon Nooshirvan Rahatabad ◽  
Keivan Maghooli

Abstract This paper presents estimation of missed samples recovery of Synthetic electrocardiography (ECG) signals by an ANFIS (Adaptive neuro-fuzzy inference system) method. After designing the ANFIS model using FCM (Fuzzy C Means) clustering method. In MATLAB’s standard library for ANFIS, only least-square-estimation and the back-propagation algorithms are used for tuning membership functions and generation of fis (fuzzy inference system) file, but at current work we have used FCM method that shows better result. Root mean square error (difference of the reference input and the generated data by ANFIS) for the three synthetic data cases are: a. Train data: RMSE = 1.7112e-5b. Test data: RMSE = 5.184e-3c. All data: RMSE = 2.2663e-3


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 935 ◽  
Author(s):  
Daniel Teso-Fz-Betoño ◽  
Ekaitz Zulueta ◽  
Unai Fernandez-Gamiz ◽  
Aitor Saenz-Aguirre ◽  
Raquel Martinez

The aim of this paper is to improve the dynamic window approach algorithm for mobile robots by implementing a prediction window with a fuzzy inference system to adapt to fixed parameters, depending on the surrounding conditions. The first implementation shows the advantage of the prediction step in terms of optimizing the path selection. The second improvement uses fuzzy inference to optimize each of the fixed parameters’ values to increase the algorithm performance. Nevertheless, a simple fuzzy inference system (FIS) was not used for this particular study; instead, an artificial neuro-fuzzy inference system (ANFIS) was used, thus making it possible to develop a FIS system with a back-propagation technique. Each parameter would have a particular ANFIS, in order to modify the α D , β D , and γ D parameters individually. At the end of the article, different scenarios are analyzed to determine whether the developments in this article have improved the DWA behavior. The results show that the prediction step and ANFIS adapt DWA performance by optimizing the path resolution.


2015 ◽  
Vol 33 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Hadi Chahkandi Nejad ◽  
Mohsen Farshad ◽  
Fereidoun Nowshiravan Rahatabad ◽  
Omid Khayat

Sign in / Sign up

Export Citation Format

Share Document