scholarly journals Comparison of Infrared Thermography with Ground-Penetrating Radar for the Non-Destructive Evaluation of Historic Masonry Bridges

2012 ◽  
Author(s):  
S. Lagüela ◽  
M. Solla ◽  
J. Armesto ◽  
H. González-Jorge
2014 ◽  
Vol 501-504 ◽  
pp. 847-851
Author(s):  
Che Way Chang ◽  
Chen Hua Lin ◽  
Shyi Lin Lee ◽  
Ping Huang Chen ◽  
Ching Cheng Jen ◽  
...  

Ground Penetrating Radar (GPR) is a high efficiency technology to detect the cylindrical medium in the concretes material. The electromagnetic wave is incidental to double-rebar, and measures the reflection signal behaviors from energy zone. The results from the reflection signal of electromagnetic wave of the reinforcement concretes allow evaluating the radius of double-bar (1.6cm, 1cm). A physical model can effectively measure the radius of double-bar by the result of electromagnetic wave reflex behavior analysis. The results indicate that, this techology is capable of estimating the reinforcing double-bar radius to within 6%.


2020 ◽  
Author(s):  
Giovanni Ludeno ◽  
Chiara Biscarini ◽  
Ilaria Catapano ◽  
Nicola Cavalagli ◽  
Francesco Ascanio Pepe ◽  
...  

<p>The objective of this study is to evaluate the cooperative use of non-destructive contactless diagnostic technologies as a tool to enhance the amount of information useful to assess historical assets’ structural and material degradation. The case study regards the Ponte Lucano structure in Tivoli (Italy) a Roman bridge located along the Aniene River, the largest tributary of the Tiber. It can be considered as an emblematic iconic structure in synthetizing the needs of structural consolidation and monument conservation. The bridge is, indeed, affected by hydraulic risk due to the floods of Aniene river.</p><p>Unmanned aerial (UAV) 3D photogrammetric surveys were carried out to perform visual inspections accounting for those bridge portions that are difficult to be reached directly. Hence, infrared thermography (IRT) and ground penetrating radar (GPR) surveys were considered as complementary technologies useful to obtain information about surface and subsurface structural features [1], [2]. The IRT analysis w characterized the thermal profile of the bridge and detected its most humid parts. The GPR investigations were performed to improve knowledge of the bridge subsurface structure.</p><p>The results of the analysis demonstrate that, the integration of mentioned diagnostic tools, provide information about the degradation state of the stones and its causes, as well as regarding the evolution of the structure from its construction up to the present configurations. In particular, UAV 3D photogrammetry allowed a very detailed digital map of the bridge, covering almost every part of the structure and revealing precious informations, among which chromatic properties and size characteristics of the bridge areas which are not directly accessible by a human operator. IRT results corroborated the hypothesis that the present degradation condition of the Ponte Lucano is mainly a result of the water retention within its materials. GPR images, provided information about the internal stratification of the materials of the bridge and allowed the localization of two buried arch structures, allegedly located in the northern bank and at the Plautii Mausoleum, whose presence confirms the historical-bibliographical hypothesis about the bridge building processes.</p><p>[1] Meola, C. Infrared thermography of masonry structures. Infrared Physics and Technology 2007; 49(3 SPEC. ISS.), 228-233.</p><p>[2] Daniels D.J. Ground Penetrating Radar. In IEE Radar, Sonar and Navigation Series 15; IEE: London, UK, 2004.</p>


2014 ◽  
Author(s):  
Aleksandra Varnavina ◽  
Aleksey Khamzin ◽  
Evgeniy Torgashov ◽  
Brandon Goodwin ◽  
Lesley Sneed ◽  
...  

2010 ◽  
Vol 163-167 ◽  
pp. 3794-3797 ◽  
Author(s):  
Yong He Liu ◽  
Ding Yan Wu ◽  
Jun Xing Wang

Because of High-resolution, high accuracy, rapid and efficient, Ground-penetrating radar has been widely used in engineering testing as one of non-destructive evaluation (NDE) methods. Combined with practical work, this paper introduced how to use the ground-penetrating radar in tunnel liner testing, the detection, preferences and waveform analysis, etc.


2014 ◽  
Author(s):  
Aleksandra Varnavina ◽  
Aleksey Khamzin ◽  
Evgeniy Torgashov ◽  
Brandon Goodwin ◽  
Lesley Sneed ◽  
...  

DYNA ◽  
2015 ◽  
Vol 82 (190) ◽  
pp. 221-226 ◽  
Author(s):  
Susana Lagüela Lopez ◽  
Mercedes Solla Carracelas ◽  
Lucía Díaz Vilariño ◽  
Julia Armesto González

The inspection of radiant heating floors requires the use of non-destructive techniques, trying to minimize inspection impact, time and cost, and maximize the information acquired so that the best possible diagnosis is given. With this goal, we propose the application of infrared thermography (IRT) and ground penetrating radar (GPR) for the inspection of radiant heating floors with different floor coatings, in order to evaluate the capabilities and information acquirable with each technique. Specifically, two common floor coatings have been inspected: ceramic tiles and parquet flooring. Results show that each technique provides different information: condition of the pipelines (IRT), geometry and configuration (GPR), concluding that the optimal inspection is constituted by the combination of the two techniques.


2020 ◽  
Author(s):  
Valerio Gagliardi ◽  
Luca Bianchini Ciampoli ◽  
Fabio Tosti ◽  
Andrea Benedetto ◽  
Amir M. Alani

<p>Approximately 70,000 masonry arch bridge spans (brick and stone) are reported to exist in the United Kingdom with in excess of tens of thousands throughout Europe. A good portion of these bridges is still operational and form part of the road and rail network systems in many countries. However, a great majority of these structures require desperate repair and maintenance [1].</p><p>Non-destructive testing (NDT) methods such as ground penetrating radar (GPR), 3D laser scanning, accelerometer sensors and thermal cameras amongst many others have been used to assess and monitor such structures in the past few years [2]. However, research has proven that stand-alone or integrated use of ground-based techniques may not represent a definitive solution to some major structural issues, such as scour and differential settlements [3], as these require continuous monitoring and data collection on long-term basis. To that extent, use of satellite data-based synthetic aperture radar (SAR) interferometry (InSAR) has proven to be effective in measuring displacements of infrastructure [4] [5] and natural terrain [6] over longer periods of observation.</p><p>Within this context, the paper presents a new integrated monitoring approach including use of the GPR and the InSAR techniques to an historic masonry arch bridge - the Old Aylesford Bridge in Kent, UK – a 13<sup>th</sup> century bridge, crossing the river Medway. Main objectives of the research were: (1) to prove the viability of low-frequency and high-frequency GPR systems in providing structural detailing of the bridge deck at different depths and resolutions; (2) to be able to measure structural displacements with a millimetre accuracy caused by the seasonal variation of the water level in the river and the river bed soil expansions. Results have proven the viability of the above process to form the basis for an integrated health monitoring mechanism.</p><p> </p><p>References</p><p>[1] Alani, A.M., Tosti, F., Banks, K., Bianchini Ciampoli, L., Benedetto, A. Non-Destructive Assessment of a Historic Masonry Arch Bridge Using Ground Penetrating Radar and 3D Laser Scanner, IMEKO International Conference on Metrology for Archaeology and Cultural Heritage Lecce, Italy, October 23-25, 2017.</p><p>[2] Solla, M., Lorenzo, H., Rial, F.I., Novo, A. (2011). GPR evaluation of the Roman masonry arch bridge of Lugo (Spain), NDT&Int., 44, 8-12.</p><p>[3] Selvakumaran, S., Plank, S., Geiß, C., Rossi, C., Middleton, C. (2018). Remote monitoring to predict bridge scour failure using Interferometric Synthetic Aperture Radar (InSAR) stacking techniques, Int. J. .Appl. Earth Obs. and Geoinf. 73, 463-470.</p><p>[4] Tosti, F., Gagliardi, V., D'Amico, F. and Alani, A.M., Transport infrastructure monitoring by data fusion of GPR and SAR imagery information. TIS 2019 International Conference of Rome, 23-24 September 2019.</p><p>[5] Bianchini Ciampoli, L., Gagliardi, V., Clementini, C. et al. (2019). Transport Infrastructure Monitoring by InSAR and GPR Data Fusion. Surv Geophys. https://doi.org/10.1007/s10712-019-09563-7</p>


Sign in / Sign up

Export Citation Format

Share Document