scholarly journals Optimizing the dynamic response of pressure reducing valves to transients in water networks

2019 ◽  
Vol 68 (5) ◽  
pp. 303-312
Author(s):  
Khaled Zaki ◽  
Yehya Imam ◽  
Amgad El-Ansary

Abstract Pressure reducing valves (PRVs) are typically used to regulate excessive pressure in water distribution networks. During transient events, the dynamic response of PRVs may adversely affect pressure fluctuations in distribution networks. In this study, the dynamic response of PRVs was analyzed by developing a numerical model that coupled an existing water-hammer model and a two-parameter dynamic PRV model. PRV parameters were calibrated, and the model was validated using previous experimental observations. The model was then used to study the effect of PRV dynamics during transient events in a distribution network. To optimize the rate of PRV opening and closure and control its dynamic response, the model was interfaced with an optimization algorithm based on shuffled complex evolution. The applied objective function gave PRV parameters that accelerated damping of the transient pressure waves and minimized the root-mean-square deviation from post-transient steady pressure at all nodes in the network. The results of this study indicate the importance of accounting for PRV response when simulating transients in water distribution networks. This study also highlights the need for PRV manufacturers to include in their product catalogs dynamic PRV parameters for use in transient analysis.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Naser Moosavian ◽  
Mohammad Reza Jaefarzadeh

Hydraulic analysis of water distribution networks is an important problem in civil engineering. A widely used approach in steady-state analysis of water distribution networks is the global gradient algorithm (GGA). However, when the GGA is applied to solve these networks, zero flows cause a computation failure. On the other hand, there are different mathematical formulations for hydraulic analysis under pressure-driven demand and leakage simulation. This paper introduces an optimization model for the hydraulic analysis of water distribution networks using a metaheuristic method called shuffled complex evolution (SCE) algorithm. In this method, applying if-then rules in the optimization model is a simple way in handling pressure-driven demand and leakage simulation, and there is no need for an initial solution vector which must be chosen carefully in many other procedures if numerical convergence is to be achieved. The overall results indicate that the proposed method has the capability of handling various pipe networks problems without changing in model or mathematical formulation. Application of SCE in optimization model can lead to accurate solutions in pipes with zero flows. Finally, it can be concluded that the proposed method is a suitable alternative optimizer challenging other methods especially in terms of accuracy.


2005 ◽  
Vol 5 (3-4) ◽  
pp. 71-80 ◽  
Author(s):  
D. Misiunas ◽  
M. Lambert ◽  
A. Simpson ◽  
G. Olsson

An algorithm for the detection and location of sudden bursts in water distribution networks combining both continuous monitoring of pressure and hydraulic transient computation is presented. The approach is designed for medium and large bursts that are the result of the sudden rupture of the pipe wall or other physical element in the network and are accompanied by the transient pressure wave that propagates throughout the network. The burst-induced transient wave arrival times and magnitudes measured at two or more points are used to find the location of a burst. The wave arrival times and magnitudes are detected using the modified cumulative sum (CUSUM) change detection test. Results of validation on a real network show the potential of the proposed burst detection and location technique to be used in water distribution systems.


Sign in / Sign up

Export Citation Format

Share Document