Groundwater prospect mapping using remote sensing, GIS and resistivity survey techniques in Chhokra Nala Raipur district, Chhattisgarh, India

2019 ◽  
Vol 68 (7) ◽  
pp. 595-606 ◽  
Author(s):  
K. Indhulekha ◽  
Kamalesh Chandra Mondal ◽  
D. C. Jhariya

Abstract Groundwater availability in urbanized areas is under high demand due to overconsumption and lack of recharge area. It is important to consider the groundwater scenario of the cities and industrial areas for its safe consumption and management. In this framework, remote sensing, geographic information system (GIS), is a tool which plays a vital role to map groundwater prospect zones due to its convenience and time-saving nature. The present study area, the watershed of Chhokra Nala, covers an area which consists partly of an industrial area and also Raipur city. The current study has utilized satellite imagery, along with other data sets, to develop different thematic layers such as geology, land use land cover, drainage and drainage density, lineament, geomorphology, rainfall, slope, groundwater depth and soil types. Integration of all these thematic layers through GIS analysis delineated the groundwater prospect zones by the application of a weighted index overlay method. A Resistivity Survey was also performed to locate groundwater potential zones. The groundwater potential zone map of the study area is categorized into five different zones, namely very low, low, moderate, high and very high.

Author(s):  
K Choudhary ◽  
M S Boori ◽  
A Kupriyanov

The main objective of this study was to detect groundwater availability for agriculture in the Orenburg, Russia. Remote sensing data (RS) and geographic information system (GIS) were used to locate potential zones for groundwater in Orenburg. Diverse maps such as a base map, geomorphological, geological structural, lithology, drainage, slope, land use/cover and groundwater potential zone were prepared using the satellite remote sensing data, ground truth data, and secondary data. ArcGIS software was utilized to manipulate these data sets. The groundwater availability of the study was classified into different classes such as very high, high, moderate, low and very low based on its hydro-geomorphological conditions. The land use/cover map was prepared using a digital classification technique with the limited ground truth for mapping irrigated areas in the Orenburg, Russia.


Author(s):  
E. E. Epuh ◽  
K. A. Sanni ◽  
M. J. Orji

Productivity through groundwater is quite high as compared to surface water, but groundwater resources have not yet been properly exploited. The present study is used to delineate various groundwater potential zones for the assessment of groundwater availability in Lagos metropolis using remote sensing and GIS and hydrogeophysics techniques. Landsat 8, SRTM, geological, soil, and rainfall data were used in the study to prepare various thematic maps, viz., geomorphological, slope, soil, lineament density, rainfall and land use maps. On the basis of relative contribution of each of these maps towards groundwater potential, the weight of each thematic map have been selected and assigned to each map. Hydrogeophysics investigation using Vertical Electric Sounding (VES) was applied to validate the remote sensing and GIS results. All the thematic maps have been registered with one another through ground control points and integrated using the weighted overlay method in GIS for computing groundwater potential index. Based on the methological approach, the ground water potential zones were delineated. The results showed that there are five categories of groundwater potential zones within the study area in which percentage values were contained in each of the categories thereby making major portion of the study area “high” and “moderate” prospect while a few scattered areas have “low” prospect. The very high potential areas are mainly concentrated along the River Alluvium while the “very low” prospect are majorly where there is sand and clay. The best groundwater potential zone is in the southern part due to the presence of fractures, swamp soils which have high infiltration ability and the presence of waterbody which is chiefly accountable for the groundwater recharge in any area. The VES data showed the depth of the aquifer for good water and the polluted aquifer within the study area.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 669
Author(s):  
Abid Sarwar ◽  
Sajid Rashid Ahmad ◽  
Muhammad Ishaq Asif Rehmani ◽  
Muhammad Asif Javid ◽  
Shazia Gulzar ◽  
...  

The changing climate and global warming have rendered existing surface water insufficient, which is projected to adversely influence the irrigated farming systems globally. Consequently, groundwater demand has increased significantly owing to increasing population and demand for plant-based foods especially in South Asia and Pakistan. This study aimed to determine the potential areas for groundwater use for agriculture sector development in the study area Lower Dir District. ArcGIS 10.4 was utilized for geospatial analysis, which is referred to as Multi Influencing Factor (MIF) methodology. Seven parameters including land cover, geology, soil, rainfall, underground faults (liniment) density, drainage density, and slope, were utilized for delineation purpose. Considering relative significance and influence of each parameter in the groundwater recharge rating and weightage was given and potential groundwater areas were classified into very high, high, good, and poor. The result of classification disclosed that the areas of 113.10, 659.38, 674.68, and 124.17 km2 had very high, high, good, and poor potential for groundwater agricultural uses, respectively. Field surveys for water table indicated groundwater potentiality, which was high for Kotkay and Lalqila union councils having shallow water table. However, groundwater potentiality was poor in Zimdara, Khal, and Talash, characterized with a very deep water table. Moreover, the study effectively revealed that remote sensing and GIS could be developed as potent tools for mapping potential sites for groundwater utilization. Furthermore, MIF technique could be a suitable approach for delineation of groundwater potential zone, which can be applied for further research in different areas.


2021 ◽  
Vol 5 (1) ◽  
pp. 34-44
Author(s):  
B. Pradeep Kumar ◽  
K. Raghu Babu ◽  
M. Rajasekhar ◽  
M. Ramachandra

Freshwater scarcity is a major issue in Rayalaseema region in Andhra Pradesh (India). Groundwater is the primary source of drinking and irrigation water in Anantapur district, Andhra Pradesh, India. Therefore, it is important to identify areas having groundwater potential; however, the current methods of groundwater exploration consume a lot of time and money. Analytic Hierarchy Process (AHP)-based spatial model is used to identify groundwater potential zones in Anantapur using remote sensing and GIS-based decision support system. Thematic layers considered in this study were geology, geomorphology, soils, land use land cover (LULC), lineament density (LD), drainage density (DD), slope, and rainfall. According to Saaty’s AHP, all these themes and individual features were weighted according to their relative importance in groundwater occurrence. Thematic layers were finally combined using ArcGIS to prepare a groundwater potential zone map. The high weighted value area was considered a groundwater prospecting region. Accordingly, the GWPZ map was classified into four categories: very good, good, moderate, and poor. The very good GWPZ area is 77.37 km2 (24.93%) of the total study area. The northeastern and southeastern sections of the study area, as well as some medium patches in the center and western regions, are covered by moderate GWPZs, which cover an area of 53.07 km2 (17.10%). However, the GWP in the study area’s central, southwestern, and northern portions is poor, encompassing an area of approximately 79.31 km2 (25.56%). Finally, RS and GIS techniques are highly effective and useful for identifying GWPZs.


2018 ◽  
Vol 92 (4) ◽  
pp. 484-490 ◽  
Author(s):  
G. Gnanachandrasamy ◽  
Yongzhang Zhou ◽  
M. Bagyaraj ◽  
S. Venkatramanan ◽  
T. Ramkumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document