scholarly journals Development of two-dimensional water quality management model using the reliability analysis method

2011 ◽  
Vol 14 (2) ◽  
pp. 412-423
Author(s):  
Sang-Ho Kim ◽  
Kun-Yeun Han ◽  
Ji-Sung Kim ◽  
Joonwoo Noh

A two-dimensional water quality management model, the unsteady/uncertainty water quality model (UUWQM), is developed for three kinds of analysis: hydrodynamic and advection–diffusion analyses by using the Petrov–Galerkin finite element method, and a reliability analysis by using uncertainty techniques. This model is then applied to a 35 km reach of the Nakdong River in Korea. Two-dimensional hydrodynamic and deterministic water quality analyses were performed in this reach. The Monte Carlo simulation (MCS) method was used to decide and verify 14 key input parameters among 80 total input parameters. These key input parameters were incorporated to compute exceedance probabilities and frequency distributions using the mean first-order second-moment (MFOSM) and MCS methods at several locations along this reach of the Nakdong River. From the results of the probable risk for water quality standard, it shows that the outputs from the MFOSM method were similar to those from the MCS method. In practical usage, the MFOSM method is more attractive in terms of its computational simplicity and shorter execution time. Therefore, the UUWQM can be applied efficiently and accurately to estimate the water quality distribution and the risk assessment for the specified water quality in any river.

2008 ◽  
Vol 2008 (15) ◽  
pp. 2142-2151
Author(s):  
James R. Rhea ◽  
Pradeep Mugunthan ◽  
David Glaser ◽  
Kevin Russell ◽  
Joseph J. Mastriano

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2569
Author(s):  
Gorana Ćosić-Flajsig ◽  
Barbara Karleuša ◽  
Matjaž Glavan

The intensive use of soil and water resources results in a disbalance between the environmental and economic objectives of the river basin. The water quality management model supports good water status, especially downstream of dams and reservoirs, as in the case of the Sutla/Sotla river basin. This research aims to develop a new, improved integrated water quality management model of rural transboundary basins to achieve environmental objectives and protection of the Natura 2000 sites. The model uses river basin pressure analysis to assess the effects of climate and hydrological extreme impacts, and a programme of basic and supplementary measures. The impact assessment of BASE MODEL, PAST, and FUTURE scenarios was modelled using the soil and water assessment tool (SWAT) based on land use, climate and hydrological data, climate change, presence or lack of a reservoir, and municipal wastewater and agriculture measures. Eight future climate change scenarios were obtained with optimistic (RCP4.5) and pessimistic (RCP8.5) forecasts for two periods (2020–2050 and 2070–2100), both with and without a reservoir. The model shows that the most significant impacts on the waterbody come from the nutrients and sediment hotspots, also shows the risk of not achieving good water status, and water eutrophication risk. The modelled average annual increase in sediment is from 4 to 25% and in total N from 1 to 8%, while the change in total P is from −5 to 6%. The conducted analysis provides a base for the selection of tailor-made measures from the catalogue of the supplementary measures that will be outlined in future research.


Sign in / Sign up

Export Citation Format

Share Document