scholarly journals Spatial diversity of chlorine residual in a drinking water distribution system: application of an integrated fuzzy logic technique

2014 ◽  
Vol 17 (2) ◽  
pp. 293-306 ◽  
Author(s):  
Donatella Termini ◽  
Gaspare Viviani

A reduction in the concentration of chlorine, which is used as a chemical disinfectant for water in drinking water distribution systems, can be considered to be an index of the progressive deterioration of water quality. In this work, attention is given to the spatial distribution of the residual chlorine in drinking water distribution systems. The criterion for grouping the water-quality parameters normally used is highly subjective and often based on data that are not correctly identified. In this paper, a cluster analysis based on fuzzy logic is applied. The advantage of the proposed procedure is that it allows a user to identify (in an automatic way and without any specific assumption) the zonation of the network and easily calibrate the unknown parameters. An analysis of the correlation between the sampling sites for the residual chlorine has been used to assess the applicability of the procedure.

2018 ◽  
Vol 4 (12) ◽  
pp. 2080-2091 ◽  
Author(s):  
Isabel Douterelo ◽  
Carolina Calero-Preciado ◽  
Victor Soria-Carrasco ◽  
Joby B. Boxall

This research highlights the potential of whole metagenome sequencing to help protect drinking water quality and safety.


2016 ◽  
Vol 82 (14) ◽  
pp. 4155-4168 ◽  
Author(s):  
I. Douterelo ◽  
S. Husband ◽  
V. Loza ◽  
J. Boxall

ABSTRACTThe majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance.IMPORTANCEThis research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers.


2006 ◽  
Vol 6 (5) ◽  
pp. 101-110 ◽  
Author(s):  
Y. Jaeger ◽  
S. Oberti ◽  
L. Guichot ◽  
J. Baron

Soft waters characterised with low alkalinity tend to reduce the lifetime of pipes in drinking water distribution systems. Consequently, the corrosion induced is likely to deteriorate water quality at the consumer's tap. Two different types of treatment methods are commonly used to control the corrosion effects of soft waters: (i) the addition of phosphate corrosion inhibitors, and (ii) the remineralisation process. In order to facilitate the decision making of network operator to use suitable treatment methods, a comparative pilot-scale experiment was performed. The above two treatment strategies were tested using pipes representing both drinking water distribution systems (used materials: cast iron and steel) and household plumbing systems (used material: copper). The impact of the two techniques was assessed by means of water quality monitoring (pH, metal leaching, etc) and of corrosion measurements using electrochemical probes as well as weight-loss coupons. The results obtained after a 15 month long experiment showed that remineralisation method was clearly the most effective way to control soft water corrosion. The implementation of this method resulted in a 50% reduction in metals leaching and about 40% decrease in iron corrosion rates.


Sign in / Sign up

Export Citation Format

Share Document