scholarly journals Data pre-processing and artificial neural networks for tidal level prediction at the Pearl River Estuary

Author(s):  
Bing-Xian Liang ◽  
Jin-Peng Hu ◽  
Cheng Liu ◽  
Bo Hong

Abstract Traditionally, tidal level is predicted by harmonic analysis (HA). In this paper, three hybrid models that couple varied pre-processing methods, which are empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and empirical wavelet transform (EWT), with the nonlinear autoregressive networks with exogenous inputs (NARX) were applied to forecast tidal level. The models were, namely, EMD-NARX, EEMD-NARX, and EWT-NARX. The sub-series obtained by using EMD or EEMD or EWT were then used as the input vectors to the NARX with the original data as targets. Notably, the EWT-NARX model was employed to predict the tidal level for the first time. Simulations were based on the measurements from four tidal stations at the Pearl River Estuary, China. The results showed that the EWT-NARX, EEMD-NARX, and EMD-NARX outperformed the HA model. Specifically, EWT-NARX was optimal among the four. Moreover, from the Hilbert energy spectra we can see the EWT solved the mode-mixing problem that EMD and EEMD suffered, thus enabling precise tidal level prediction. Simulations and experimental results confirmed that the EWT-NARX model can achieve prediction for the tidal level with high accuracy.

2019 ◽  
Vol 29 (4) ◽  
pp. 861-875
Author(s):  
Zeyu Zeng ◽  
William W. L. Cheung ◽  
Shiyu Li ◽  
Jiatang Hu ◽  
Ying Wang

2021 ◽  
Vol 9 (2) ◽  
pp. 131
Author(s):  
Dongliang Wang ◽  
Lijun Yao ◽  
Jing Yu ◽  
Pimao Chen

The Pearl River Estuary (PRE) is one of the major fishing grounds for the squid Uroteuthis chinensis. Taking that into consideration, this study analyzes the environmental effects on the spatiotemporal variability of U. chinensis in the PRE, on the basis of the Generalized Additive Model (GAM) and Clustering Fishing Tactics (CFT), using satellite and in situ observations. Results show that 63.1% of the total variation in U. chinensis Catch Per Unit Effort (CPUE) in the PRE could be explained by looking into outside factors. The most important one was the interaction of sea surface temperature (SST) and month, with a contribution of 26.7%, followed by the interaction effect of depth and month, fishermen’s fishing tactics, sea surface salinity (SSS), chlorophyll a concentration (Chl a), and year, with contributions of 12.8%, 8.5%, 7.7%, 4.0%, and 3.1%, respectively. In summary, U. chinensis in the PRE was mainly distributed over areas with an SST of 22–29 °C, SSS of 32.5–34‰, Chl a of 0–0.3 mg × m−3, and water depth of 40–140 m. The distribution of U. chinensis in the PRE was affected by the western Guangdong coastal current, distribution of marine primary productivity, and variation of habitat conditions. Lower stock of U. chinensis in the PRE was connected with La Niña in 2008.


Harmful Algae ◽  
2012 ◽  
Vol 13 ◽  
pp. 10-19 ◽  
Author(s):  
Ping-Ping Shen ◽  
Ya-Nan Li ◽  
Yu-Zao Qi ◽  
Lv-Ping Zhang ◽  
Ye-Hui Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document