scholarly journals Multi-source data fusion method for structural safety assessment of water diversion structures

Author(s):  
Sherong Zhang ◽  
Ting Liu ◽  
Chao Wang

Abstract Building safety assessment based on single sensor data has the problems of low reliability and high uncertainty. Therefore, this paper proposes a novel multi-source sensor data fusion method based on Improved Dempster–Shafer (D-S) evidence theory and Back Propagation Neural Network (BPNN). Before data fusion, the improved self-support function is adopted to preprocess the original data. The process of data fusion is divided into three steps: Firstly, the feature of the same kind of sensor data is extracted by the adaptive weighted average method as the input source of BPNN. Then, BPNN is trained and its output is used as the basic probability assignment (BPA) of D-S evidence theory. Finally, Bhattacharyya Distance (BD) is introduced to improve D-S evidence theory from two aspects of evidence distance and conflict factors, and multi-source data fusion is realized by D-S synthesis rules. In practical application, a three-level information fusion framework of the data level, the feature level, and the decision level is proposed, and the safety status of buildings is evaluated by using multi-source sensor data. The results show that compared with the fusion result of the traditional D-S evidence theory, the algorithm improves the accuracy of the overall safety state assessment of the building and reduces the MSE from 0.18 to 0.01%.

Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 611 ◽  
Author(s):  
Zhe Wang ◽  
Fuyuan Xiao

Dempster–Shafer (DS) evidence theory is widely applied in multi-source data fusion technology. However, classical DS combination rule fails to deal with the situation when evidence is highly in conflict. To address this problem, a novel multi-source data fusion method is proposed in this paper. The main steps of the proposed method are presented as follows. Firstly, the credibility weight of each piece of evidence is obtained after transforming the belief Jenson–Shannon divergence into belief similarities. Next, the belief entropy of each piece of evidence is calculated and the information volume weights of evidence are generated. Then, both credibility weights and information volume weights of evidence are unified to generate the final weight of each piece of evidence before the weighted average evidence is calculated. Then, the classical DS combination rule is used multiple times on the modified evidence to generate the fusing results. A numerical example compares the fusing result of the proposed method with that of other existing combination rules. Further, a practical application of fault diagnosis is presented to illustrate the plausibility and efficiency of the proposed method. The experimental result shows that the targeted type of fault is recognized most accurately by the proposed method in comparing with other combination rules.


2021 ◽  
Vol 17 (7) ◽  
pp. 155014772110314
Author(s):  
Shijun Xu ◽  
Yi Hou ◽  
Xinpu Deng ◽  
Peibo Chen ◽  
Kewei Ouyang ◽  
...  

Dempster–Shafer (D–S) evidence theory is more and more extensively applied in multi-sensor data fusion. However, it is still an open issue that how to effectively combine highly conflicting evidence in D–S evidence theory. In this article, a novel divergence measure, called pignistic probability transformation divergence, is proposed to measure the difference between evidences. The proposed pignistic probability transformation divergence can reflect the interaction between single-element and multi-element subsets by introducing the pignistic probability transformation, and satisfies the properties of boundedness, non-degeneracy, and symmetry. Moreover, the pignistic probability transformation divergence can degenerate as Jensen–Shannon divergence when mass function and the probability distribution are consistent. Based on the pignistic probability transformation divergence, a new multi-sensor data fusion method is presented. The proposed method takes advantage of pignistic probability transformation divergence to measure the discrepancy between evidences in order to obtain the credibility weights, and belief entropy to measure the uncertainty of the evidences in order to obtain the information volume weights, which can fully mine the potential information between evidences. Then, the credibility weights and the information volume weights are integrated to generate an appropriate weighted average evidence before using Dempster’s combination rule. The results of two application cases illustrate that the proposed method outperforms other related methods for combining highly conflicting evidences.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 993 ◽  
Author(s):  
Bin Yang ◽  
Dingyi Gan ◽  
Yongchuan Tang ◽  
Yan Lei

Quantifying uncertainty is a hot topic for uncertain information processing in the framework of evidence theory, but there is limited research on belief entropy in the open world assumption. In this paper, an uncertainty measurement method that is based on Deng entropy, named Open Deng entropy (ODE), is proposed. In the open world assumption, the frame of discernment (FOD) may be incomplete, and ODE can reasonably and effectively quantify uncertain incomplete information. On the basis of Deng entropy, the ODE adopts the mass value of the empty set, the cardinality of FOD, and the natural constant e to construct a new uncertainty factor for modeling the uncertainty in the FOD. Numerical example shows that, in the closed world assumption, ODE can be degenerated to Deng entropy. An ODE-based information fusion method for sensor data fusion is proposed in uncertain environments. By applying it to the sensor data fusion experiment, the rationality and effectiveness of ODE and its application in uncertain information fusion are verified.


Sign in / Sign up

Export Citation Format

Share Document