open world assumption
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 2022 (1) ◽  
pp. 126-147
Author(s):  
Michal Tereszkowski-Kaminski ◽  
Sergio Pastrana ◽  
Jorge Blasco ◽  
Guillermo Suarez-Tangil

Abstract Code Stylometry has emerged as a powerful mechanism to identify programmers. While there have been significant advances in the field, existing mechanisms underperform in challenging domains. One such domain is studying the provenance of code shared in underground forums, where code posts tend to have small or incomplete source code fragments. This paper proposes a method designed to deal with the idiosyncrasies of code snippets shared in these forums. Our system fuses a forum-specific learning pipeline with Conformal Prediction to generate predictions with precise confidence levels as a novelty. We see that identifying unreliable code snippets is paramount to generate high-accuracy predictions, and this is a task where traditional learning settings fail. Overall, our method performs as twice as well as the state-of-the-art in a constrained setting with a large number of authors (i.e., 100). When dealing with a smaller number of authors (i.e., 20), it performs at high accuracy (89%). We also evaluate our work on an open-world assumption and see that our method is more effective at retaining samples.


Axiomathes ◽  
2021 ◽  
Author(s):  
Timothy Tambassi

AbstractIn the domain of information systems ontologies, the notion of completeness refers to ontological contents by demanding that they be exhaustive with respect to the domain that the ontology aims to represent. The purpose of this paper is to analyze such a notion, by distinguishing different varieties of completeness and by questioning its consistency with the open-world assumption, which formally assumes the incompleteness of conceptualizations on information systems ontologies.


2021 ◽  
Author(s):  
Claudia Cauli ◽  
Magdalena Ortiz ◽  
Nir Piterman

Infrastructure in the cloud is deployed through configuration files, which specify the resources to be created, their settings, and their connectivity. We aim to model infrastructure before deployment and reason about it so that potential vulnerabilities can be discovered and security best practices enforced. Description logics are a good match for such modeling efforts and allow for a succinct and natural description of cloud infrastructure. Their open-world assumption allows capturing the distributed nature of the cloud, where a newly deployed infrastructure could connect to pre-existing resources not necessarily owned by the same user. However, parts of the infrastructure that are fully known need closed-world reasoning, calling for the usage of expressive formalisms, which increase the computational complexity of reasoning. Here, we suggest an extension of DL-LiteF that is tailored for capturing such cloud infrastructure. Our logic allows combining a core part that is completely defined (closed-world) and interacts with a partially known environment (open-world). We show that this extension preserves the first-order rewritability of DL-LiteF for knowledge-base satisfiability and conjunctive query answering. Security properties combine universal and existential reasoning about infrastructure. Thus, we also consider the problem of conjunctive query satisfiability and show that it can be solved in logarithmic space in data complexity.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1292
Author(s):  
Yutong Chen ◽  
Yongchuan Tang

The Dempster–Shafer evidence theory has been widely used in the field of data fusion. However, with further research, incomplete information under the open world assumption has been discovered as a new type of uncertain information. The classical Dempster’s combination rules are difficult to solve the related problems of incomplete information under the open world assumption. At the same time, partial information entropy, such as the Deng entropy is also not applicable to deal with problems under the open world assumption. Therefore, this paper proposes a new method framework to process uncertain information and fuse incomplete data. This method is based on an extension to the Deng entropy in the open world assumption, negation of basic probability assignment (BPA), and the generalized combination rule. The proposed method can solve the problem of incomplete information under the open world assumption, and obtain more uncertain information through the negative processing of BPA, which improves the accuracy of the results. The results of applying this method to fault diagnosis of electronic rotor examples show that, compared with the other uncertain information processing and fusion methods, the proposed method has wider adaptability and higher accuracy, and is more conducive to practical engineering applications.


2021 ◽  
Vol 7 (1) ◽  
pp. 0-0

Web ontologies can contain vague concepts, which means the knowledge about them is imprecise and then query answering will not possible due to the open world assumption. A concept description can be very exact (crisp concept) or exact (fuzzy concept) if its knowledge is complete, otherwise it is inexact (vague concept) if its knowledge is incomplete. In this paper, we propose a method based on the rough set theory for reasoning on vague ontologies. With this method, the detection of vague concepts will insert into the original ontology new rough vague concepts where their description is defined on approximation spaces to be used by extended Tableau algorithm for automatic reasoning. The extended Tableau algorithm by this rough set-based vagueness is intended to answer queries even with the presence of incomplete information.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 993 ◽  
Author(s):  
Bin Yang ◽  
Dingyi Gan ◽  
Yongchuan Tang ◽  
Yan Lei

Quantifying uncertainty is a hot topic for uncertain information processing in the framework of evidence theory, but there is limited research on belief entropy in the open world assumption. In this paper, an uncertainty measurement method that is based on Deng entropy, named Open Deng entropy (ODE), is proposed. In the open world assumption, the frame of discernment (FOD) may be incomplete, and ODE can reasonably and effectively quantify uncertain incomplete information. On the basis of Deng entropy, the ODE adopts the mass value of the empty set, the cardinality of FOD, and the natural constant e to construct a new uncertainty factor for modeling the uncertainty in the FOD. Numerical example shows that, in the closed world assumption, ODE can be degenerated to Deng entropy. An ODE-based information fusion method for sensor data fusion is proposed in uncertain environments. By applying it to the sensor data fusion experiment, the rationality and effectiveness of ODE and its application in uncertain information fusion are verified.


2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i210-i218 ◽  
Author(s):  
Alex Warwick Vesztrocy ◽  
Christophe Dessimoz

Abstract Motivation With the ever-increasing number and diversity of sequenced species, the challenge to characterize genes with functional information is even more important. In most species, this characterization almost entirely relies on automated electronic methods. As such, it is critical to benchmark the various methods. The Critical Assessment of protein Function Annotation algorithms (CAFA) series of community experiments provide the most comprehensive benchmark, with a time-delayed analysis leveraging newly curated experimentally supported annotations. However, the definition of a false positive in CAFA has not fully accounted for the open world assumption (OWA), leading to a systematic underestimation of precision. The main reason for this limitation is the relative paucity of negative experimental annotations. Results This article introduces a new, OWA-compliant, benchmark based on a balanced test set of positive and negative annotations. The negative annotations are derived from expert-curated annotations of protein families on phylogenetic trees. This approach results in a large increase in the average information content of negative annotations. The benchmark has been tested using the naïve and BLAST baseline methods, as well as two orthology-based methods. This new benchmark could complement existing ones in future CAFA experiments. Availability and Implementation All data, as well as code used for analysis, is available from https://lab.dessimoz.org/20_not. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 8 (9) ◽  
pp. 365 ◽  
Author(s):  
Jetlund ◽  
Onstein ◽  
Huang

This study aims to improve the implementation of models of geospatial information in Web Ontology Language (OWL). Large amounts of geospatial information are maintained in Geographic Information Systems (GIS) based on models according to the Unified Modeling Language (UML) and standards from ISO/TC 211 and the Open Geospatial Consortium (OGC). Sharing models and geospatial information in the Semantic Web will increase the usability and value of models and information, as well as enable linking with spatial and non-spatial information from other domains. Methods for conversion from UML to OWL for basic concepts used in models of geospatial information have been studied and evaluated. Primary conversion challenges have been identified with specific attention to whether adapted rules for UML modelling could contribute to improved conversions. Results indicated that restrictions related to abstract classes, unions, compositions and code lists in UML are challenging in the Open World Assumption (OWA) on which OWL is based. Two conversion challenges are addressed by adding more semantics to UML models: global properties and reuse of external concepts. The proposed solution is formalized in a UML profile supported by rules and recommendations and demonstrated with a UML model based on the Intelligent Transport Systems (ITS) standard ISO 14825 Geographic Data Files (GDF). The scope of the resulting ontology will determine to what degree the restrictions shall be maintained in OWL, and different conversion methods are needed for different scopes.


Author(s):  
Giovanni Amendola ◽  
Nicola Leone ◽  
Marco Manna ◽  
Pierfrancesco Veltri

Existential rules generalize Datalog with existential quantification in the head. Natively, Datalog is interpreted under a closed-world semantics, while existential rules typically employ the open-world assumption. The interpretation domain in the latter case is enlarged by infinitely many "anonymous" individuals. Then, in any rule, each variable ranges over all individuals, even if not needed or required. In this paper, we enhance existential rules by closed-world variables to consciously reason on the properties of "known" (non-anonymous) and arbitrary individuals in different ways. Accordingly, we uniformly generalize the basic classes of existential rules that ensure decidability of ontology-based query answering. For them, after observing that decidability is preserved, we prove that a strict increase in expressiveness is gained, and in most cases the computational complexity is not altered.


Sign in / Sign up

Export Citation Format

Share Document