scholarly journals Incomplete Information Management Using an Improved Belief Entropy in Dempster-Shafer Evidence Theory

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 993 ◽  
Author(s):  
Bin Yang ◽  
Dingyi Gan ◽  
Yongchuan Tang ◽  
Yan Lei

Quantifying uncertainty is a hot topic for uncertain information processing in the framework of evidence theory, but there is limited research on belief entropy in the open world assumption. In this paper, an uncertainty measurement method that is based on Deng entropy, named Open Deng entropy (ODE), is proposed. In the open world assumption, the frame of discernment (FOD) may be incomplete, and ODE can reasonably and effectively quantify uncertain incomplete information. On the basis of Deng entropy, the ODE adopts the mass value of the empty set, the cardinality of FOD, and the natural constant e to construct a new uncertainty factor for modeling the uncertainty in the FOD. Numerical example shows that, in the closed world assumption, ODE can be degenerated to Deng entropy. An ODE-based information fusion method for sensor data fusion is proposed in uncertain environments. By applying it to the sensor data fusion experiment, the rationality and effectiveness of ODE and its application in uncertain information fusion are verified.

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1292
Author(s):  
Yutong Chen ◽  
Yongchuan Tang

The Dempster–Shafer evidence theory has been widely used in the field of data fusion. However, with further research, incomplete information under the open world assumption has been discovered as a new type of uncertain information. The classical Dempster’s combination rules are difficult to solve the related problems of incomplete information under the open world assumption. At the same time, partial information entropy, such as the Deng entropy is also not applicable to deal with problems under the open world assumption. Therefore, this paper proposes a new method framework to process uncertain information and fuse incomplete data. This method is based on an extension to the Deng entropy in the open world assumption, negation of basic probability assignment (BPA), and the generalized combination rule. The proposed method can solve the problem of incomplete information under the open world assumption, and obtain more uncertain information through the negative processing of BPA, which improves the accuracy of the results. The results of applying this method to fault diagnosis of electronic rotor examples show that, compared with the other uncertain information processing and fusion methods, the proposed method has wider adaptability and higher accuracy, and is more conducive to practical engineering applications.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 402
Author(s):  
Yutong Chen ◽  
Yongchuan Tang

Dempster-Shafer (DS) evidence theory is widely used in various fields of uncertain information processing, but it may produce counterintuitive results when dealing with conflicting data. Therefore, this paper proposes a new data fusion method which combines the Deng entropy and the negation of basic probability assignment (BPA). In this method, the uncertain degree in the original BPA and the negation of BPA are considered simultaneously. The degree of uncertainty of BPA and negation of BPA is measured by the Deng entropy, and the two uncertain measurement results are integrated as the final uncertainty degree of the evidence. This new method can not only deal with the data fusion of conflicting evidence, but it can also obtain more uncertain information through the negation of BPA, which is of great help to improve the accuracy of information processing and to reduce the loss of information. We apply it to numerical examples and fault diagnosis experiments to verify the effectiveness and superiority of the method. In addition, some open issues existing in current work, such as the limitations of the Dempster–Shafer theory (DST) under the open world assumption and the necessary properties of uncertainty measurement methods, are also discussed in this paper.


2019 ◽  
Vol 14 (3) ◽  
pp. 329-343 ◽  
Author(s):  
Yukun Dong ◽  
Jiantao Zhang ◽  
Zhen Li ◽  
Yong Hu ◽  
Yong Deng

Although evidence theory has been applied in sensor data fusion, it will have unreasonable results when handling highly conflicting sensor reports. To address the issue, an improved fusing method with evidence distance and belief entropy is proposed. Generally, the goal is to obtain the appropriate weights assigning to different reports. Specifically, the distribution difference between two sensor reports is measured by belief entropy. The diversity degree is presented by the combination of evidence distance and the distribution difference. Then, the weight of each sensor report is determined based on the proposed diversity degree. Finally, we can use Dempster combination rule to make the decision. A real application in fault diagnosis and an example show the efficiency of the proposed method. Compared with the existing methods, the method not only has a better performance of convergence, but also less uncertainty.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 495 ◽  
Author(s):  
Ying Zhou ◽  
Yongchuan Tang ◽  
Xiaozhe Zhao

Uncertain information exists in each procedure of an air combat situation assessment. To address this issue, this paper proposes an improved method to address the uncertain information fusion of air combat situation assessment in the Dempster–Shafer evidence theory (DST) framework. A better fusion result regarding the prediction of military intention can be helpful for decision-making in an air combat situation. To obtain a more accurate fusion result of situation assessment, an improved belief entropy (IBE) is applied to preprocess the uncertainty of situation assessment information. Data fusion of assessment information after preprocessing will be based on the classical Dempster’s rule of combination. The illustrative example result validates the rationality and the effectiveness of the proposed method.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2137
Author(s):  
Dingyi Gan ◽  
Bin Yang ◽  
Yongchuan Tang

The Dempster–Shafer evidence theory has been widely applied in the field of information fusion. However, when the collected evidence data are highly conflicting, the Dempster combination rule (DCR) fails to produce intuitive results most of the time. In order to solve this problem, the base belief function is proposed to modify the basic probability assignment (BPA) in the exhaustive frame of discernment (FOD). However, in the non-exhaustive FOD, the mass function value of the empty set is nonzero, which makes the base belief function no longer applicable. In this paper, considering the influence of the size of the FOD and the mass function value of the empty set, a new belief function named the extended base belief function (EBBF) is proposed. This method can modify the BPA in the non-exhaustive FOD and obtain intuitive fusion results by taking into account the characteristics of the non-exhaustive FOD. In addition, the EBBF can degenerate into the base belief function in the exhaustive FOD. At the same time, by calculating the belief entropy of the modified BPA, we find that the value of belief entropy is higher than before. Belief entropy is used to measure the uncertainty of information, which can show the conflict more intuitively. The increase of the value of entropy belief is the consequence of conflict. This paper also designs an improved conflict data management method based on the EBBF to verify the rationality and effectiveness of the proposed method.


Author(s):  
Lifan Sun ◽  
Yuting Chang ◽  
Jiexin Pu ◽  
Haofang Yu ◽  
Zhe Yang

The Dempster-Shafer (D-S) theory is widely applied in various fields involved with multi-sensor information fusion for radar target tracking, which offers a useful tool for decision-making. However, the application of D-S evidence theory has some limitations when evidences are conflicting. This paper proposed a new method combining the Pignistic probability distance and the Deng entropy to address the problem. First, the Pignistic probability distance is applied to measure the conflict degree of evidences. Then, the uncertain information is measured by introducing the Deng entropy. Finally, the evidence correction factor is calculated for modifying the bodies of evidence, and the Dempster’s combination rule is adopted for evidence fusion. Simulation experiments illustrate the effectiveness of the proposed method dealing with conflicting evidences.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Yong Chen ◽  
Yongchuan Tang ◽  
Yan Lei

Uncertainty in data fusion applications has received great attention. Due to the effectiveness and flexibility in handling uncertainty, Dempster–Shafer evidence theory is widely used in numerous fields of data fusion. However, Dempster–Shafer evidence theory cannot be used directly for conflicting sensor data fusion since counterintuitive results may be attained. In order to handle this issue, a new method for data fusion based on weighted belief entropy and the negation of basic probability assignment (BPA) is proposed. First, the negation of BPA is applied to represent the information in a novel view. Then, by measuring the uncertainty of the evidence, the weighted belief entropy is adopted to indicate the relative importance of evidence. Finally, the ultimate weight of each body of evidence is applied to adjust the mass function before fusing by the Dempster combination rule. The validity of the proposed method is demonstrated in accordance with an experiment on artificial data and an application on fault diagnosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Like Wang ◽  
Yu Bao

Dempster-Shafer evidence theory can effectively process imperfect information and is widely used in a data fusion system. However, classical Dempster-Shafer evidence theory involves counter-intuitive behaviors with the data of multisensor high conflict in target identification system. In order to solve this problem, an improved evidence combination method is proposed in this paper. By calculating the support degree and the belief entropy of each sensor, the proposed method combines conflict evidences. A new method is used to calculate support degree in this paper. At the same time, inspired by Deng entropy, the modified belief entropy is proposed by considering the scale of the frame of discernment (FOD) and the relative scale of the intersection between evidences with respect to FOD. Because of these two modifications, the effect has been improved in conflict data fusion. Several methods are compared and analyzed through examples. And the result suggests the proposed method can not only obtain reasonable and correct results but also have the highest fusion reliability in solving the problem of high conflict data fusion.


2018 ◽  
Vol 14 (04) ◽  
pp. 4
Author(s):  
Xuemei Yao ◽  
Shaobo Li ◽  
Yong Yao ◽  
Xiaoting Xie

As the information measured by a single sensor cannot reflect the real situation of mechanical devices completely, a multi-sensor data fusion based on evidence theory is introduced. Evidence theory has the advantage of dealing with uncertain information. However, it produces unreasonable conclusions when the evidence conflicts. An improved fusion method is proposed to solve this problem. Basic probability assignment of evidence is corrected according to evidence and sensor weights, and an optimal fusion algorithm is selected by comparing an introduced threshold and a conflict factor. The effectiveness and practicability of the algorithm are tested by simulating the monitoring and diagnosis of rolling bearings. The result shows that the method has better robustness.


Sign in / Sign up

Export Citation Format

Share Document