Estimating daily pan evaporation from climatic data of the State of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN)

2011 ◽  
Vol 42 (6) ◽  
pp. 491-502 ◽  
Author(s):  
J. Shiri ◽  
W. Dierickx ◽  
A. Pour-Ali Baba ◽  
S. Neamati ◽  
M. A. Ghorbani

Evaporation is a major component of the hydrological cycle. It is an important aspect of water resource engineering and management, and in estimating the water budget of irrigation schemes. The current work presents the application of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) approaches for modeling daily pan evaporation using daily climatic parameters. The neuro-fuzzy and neural network models are trained and tested using the data of three weather stations from different geographical positions in the U.S. State of Illinois. Daily meteorological variables such as air temperature, solar radiation, wind speed, relative humidity, surface soil temperature and total rainfall for three years (August 2005 to September 2008) were used for training and testing the employed models. Statistic parameters such as the coefficient of determination (R2), the root mean squared error (RMSE), the variance accounted for (VAF), the adjusted coefficient of efficiency (E1) and the adjusted index of agreement (d1) are used to evaluate the performance of the applied techniques. The results obtained show the feasibility of the ANFIS and ANN evaporation modeling from the available climatic parameters, especially when limited climatic parameters are used.

As the technology advances, the reliability becomes the main constraint for the successful operation of the electronic product. To fully automate the system, the electronic devices become more and more complex. Reliability becomes a challenge with the regular demand of low cost and high-speed devices. Residual life estimation of passive devices such as resistor, capacitor etc. is of a great concern. Failure of one small component can lead to fully damage of whole system. In this paper, a practical approach i.e. accelerated life testing is deployed to calculate remaining useful life of the ceramic capacitor. An intelligent model is formulated using various artificial intelligence techniques. Artificial Neural Network (ANN), Fuzzy Inference System (FIS) as well as Adaptive Neuro Fuzzy Inference System (ANFIS) are deployed to predict the remaining useful lifetime of an electrolytic capacitor. An error analysis is conducted to estimate the most accurate intelligent technique. A fuzzy based decision support system is modelled, which provides an interactive GUI to users. The user can access the live health status of electrolytic capacitor at various input parameters. It will warn the user to replace or repair the upcoming fault in the component or device, before it actually degrades or shut downs the complete system. The comparative analysis of all the artificial intelligence techniques shows that Adaptive Neuro Fuzzy Inference System (ANFIS) has the highest accuracy i.e. 99.5%, as compare to Artificial Neural Network (ANN) and Fuzzy Inference System (FIS), where accuracy rate is 98.06% and 97.84% respectively. This prediction system is helpful to reduce the problem of electronic e-waste by enabling the user to reuse the component


Sign in / Sign up

Export Citation Format

Share Document