Sharing the Incomati waters: cooperation and competition in the balance

Water Policy ◽  
2003 ◽  
Vol 5 (4) ◽  
pp. 349-368 ◽  
Author(s):  
Pieter van der Zaag ◽  
Álvaro Carmo Vaz

The water resources of the Incomati river basin, shared between South Africa, Swaziland and Mozambique, are intensively used. Moreover, the basin is situated in a part of Africa that over the last 40 years has experienced a dynamic, sometimes turbulent and volatile, political history. Both ingredients might have been sufficient for the emergence of confrontations over water. Tensions between Mozambique, South Africa and Swaziland over Incomati waters existed but never escalated. This case study attempts to explain why cooperation prevailed, by presenting information about the natural characteristics of the basin, its political history, water developments and the negotiations that took place during the period 1967–2002. The paper provides four explanations why tensions did not escalate and cooperation prevailed. It is concluded that the developments in the Incomati basin support the hypothesis that water drives peoples and countries towards cooperation. Increased water use has indeed led to rising cooperation. When the next drought comes and Mozambique, South Africa and Swaziland enforce their recently concluded agreement, and voluntarily decrease those water uses deemed less essential, then the hypothesis has to be accepted.

Author(s):  
Y. Jia ◽  
N. Wei ◽  
C. Hao ◽  
J. You ◽  
C. Niu ◽  
...  

Abstract. The water resources situation in the water-stressed Weihe River Basin, China, is more serious now than ever before because of a decrease in water resources and socio-economic development. A "Zero increase of socio-economic water use" in recent years gives people a wrong understanding and conceals the water crisis in the basin because the socio-economic water consumption has actually increased. Water use for the hydro-ecological system has been greatly reduced by a decrease in water resources and socio-economic water consumption increase. New concepts of hierarchical water uses for every sector and water consumption control are suggested for coordinating water uses of the socio-economy and ecosystems in the water-stressed basin. The traditional water resources allocation and regulation in China usually set up a priority sequence for water use sectors. Generally speaking, domestic water use has the highest priority and a highest guarantee rate, followed by industrial water use, irrigation and lastly ecological water use. The concept of hierarchical water use for every sector is to distinguish the water use of every sector into minimum part, appropriate part, and expected extra part with different guarantee rates, and the minimum parts of all sectors should be first guaranteed. By applying a water allocation model, we compared the water allocation results of the traditional approach and the newly suggested approach. Although further study is desired, the results are believed to be of an important referential value to sustainable development in the basin.


2012 ◽  
Vol 212-213 ◽  
pp. 113-116
Author(s):  
Chun Xiao ◽  
Dong Guo Shao ◽  
Feng Shun Yang

Aiming at the existing problems in the models of water resources allocation, the concept of friendly allocation of water resources was put forward, and based on the principles of basic water use guarantee, preference of status in quo, fairness and high efficiency, the friendly subfunctions were established and an integrated model of water resources allocation was proposed with maximizing friendly function of water resources allocation. As a case study, the proposed allocation model was applied in Fuhuan River Basin in China, and the results indicated that the model was rational and effective, which provides a new method for water resources allocation in the river basin.


Author(s):  
O. T. Amoo ◽  
M. D. V. Nakin ◽  
A. Abayomi ◽  
H. O. Ojugbele ◽  
A. W. Salami

Abstract. Water shortages are a chronic and severe problem in South Africa. Allocation of this limited water resources, environmental quality, and policies for sustainable water use are issues of increasing concern that require accurate and timely information to evolve strategies for dynamic natural resources management. Specifically, this paper is aimed to assist the planning, restoring and to rationally allocate the water resources in any river basin in resolving the current water stresses in many parts of South Africa, by using integrated knowledge from simulation and integrated river basin management approach. The developed system dynamic (SD) allocation system was used to investigates the extent to which the framework is ‘sustainable’ in the medium and long terms in evaluating existing and future water allocation among conflicting users at Mkomazi River Basin (MRB), KwaZulu-Natal Province, South Africa The invented SD framework confirms agricultural water use as the highest demand when compared with other users. The optimal sustainability performance index (0.25) of the system at 70% dependable flow shows an integrated scenario that combines rainfall variation with improved irrigation water use efficiency as a suitable framework plan. The study uses integrated knowledge from simulation and integrated river basin management approach as a feasible method to assist the planning, restoring and to rationally allocate the water resources in any river basin with similar attributes to the study area in resolving the current water stresses in many parts of the country. Water resources managers would find these tools beneficial in understanding the complex nature of water resources allocation and in determining priorities area which required prompt attention and intervention.


Author(s):  
Seiichi Kagaya ◽  
Tetsuya Wada

AbstractIn recent years, it has become popular for some of countries and regions to adapt the system of governance to varied and complex issues concerned with regional development and the environment. Watershed management is possibly the best example of this. It involves flood control, water use management and river environment simultaneously. Therefore, comprehensive watershed-based management should be aimed at balancing those aims. The objectives of this study are to introduce the notion of environmental governance into the planning process, to establish a method for assessing the alternatives and to develop a procedure for determining the most appropriate plan for environmental governance. The planning process here is based on strategic environment assessment (SEA). To verify the hypothetical approach, the middle river basin in the Tokachi River, Japan was selected as a case study. In practice, after workshop discussions, it was found to have the appropriate degree of consensus based on the balance of flood control and environmental protection in the watershed.


2014 ◽  
Author(s):  
◽  
Oluwaseun Kunle Oyebode

Streamflow modelling remains crucial to decision-making especially when it concerns planning and management of water resources systems in water-stressed regions. This study proposes a suitable method for streamflow modelling irrespective of the limited availability of historical datasets. Two data-driven modelling techniques were applied comparatively so as to achieve this aim. Genetic programming (GP), an evolutionary algorithm approach and a differential evolution (DE)-trained artificial neural network (ANN) were used for streamflow prediction in the upper Mkomazi River, South Africa. Historical records of streamflow and meteorological variables for a 19-year period (1994- 2012) were used for model development and also in the selection of predictor variables into the input vector space of the models. In both approaches, individual monthly predictive models were developed for each month of the year using a 1-year lead time. Two case studies were considered in development of the ANN models. Case study 1 involved the use of correlation analysis in selecting input variables as employed during GP model development, while the DE algorithm was used for training and optimizing the model parameters. However in case study 2, genetic programming was incorporated as a screening tool for determining the dimensionality of the ANN models, while the learning process was further fine-tuned by subjecting the DE algorithm to sensitivity analysis. Altogether, the performance of the three sets of predictive models were evaluated comparatively using three statistical measures namely, Mean Absolute Percent Error (MAPE), Root Mean-Squared Error (RMSE) and coefficient of determination (R2). Results showed better predictive performance by the GP models both during the training and validation phases when compared with the ANNs. Although the ANN models developed in case study 1 gave satisfactory results during the training phase, they were unable to extensively replicate those results during the validation phase. It was found that results from case study 1 were considerably influenced by the problems of overfitting and memorization, which are typical of ANNs when subjected to small amount of datasets. However, results from case study 2 showed great improvement across the three evaluation criteria, as the overfitting and memorization problems were significantly minimized, thus leading to improved accuracy in the predictions of the ANN models. It was concluded that the conjunctive use of the two evolutionary computation methods (GP and DE) can be used to improve the performance of artificial neural networks models, especially when availability of datasets is limited. In addition, the GP models can be deployed as predictive tools for the purpose of planning and management of water resources within the Mkomazi region and KwaZulu-Natal province as a whole.


2019 ◽  
Vol 19 (7) ◽  
pp. 1963-1971
Author(s):  
Karen Lebek ◽  
Cornelius Senf ◽  
David Frantz ◽  
José A. F. Monteiro ◽  
Tobias Krueger

Sign in / Sign up

Export Citation Format

Share Document