Treatment and Quality of Sewage Sludge in Germany - Results of a Survey

2007 ◽  
Vol 2 (1) ◽  
Author(s):  
A. Meda ◽  
C. Schaum ◽  
M. Wagner ◽  
P. Cornel ◽  
A. Durth

TIn 2004, the German Association for Wastewater, Water and Waste (DWA) carried out a survey about the current status of sewage sludge treatment and disposal in Germany. The study covered about one third of the wastewater treatment plants and about two thirds of the entire treatment capacity (expressed in population equivalents) in Germany. This provides an up-to-date and representative database. The paper presents the most important results regarding sludge treatment, process engineering, current disposal paths and sewage sludge quality.

2006 ◽  
Vol 53 (11) ◽  
pp. 221-226 ◽  
Author(s):  
M. Minamiyama ◽  
S. Ochi ◽  
Y. Suzuki

Many environmental problems caused by endocrine disruptors (EDs) have been reported. It is reported that EDs flow into sewage treatment plants, and it has been pointed out that these may be shifted from the wastewater treatment process to the sludge treatment process. Little is known about the fate of EDs accumulated in sewage sludge, so we carried out a study to clarify the fate of EDs in sewage sludge treatment processes, especially in an anaerobic digestion process. In this study, nonylphenol (NP) was selected as a target ED. Nonylphenol ethoxylates (NPnEO) or nonylphenoxy acetic acids (NPnEC), which were the precursor of NP, were added to an anaerobic digestion process, and mass balance was investigated. The following results were obtained from the anaerobic digestion experiments. (1) NP1EO was injected to an anaerobic digestion testing apparatus that was operated at a retention time of approximately 28 d and a temperature of 35 °C with thickened sludge sampled from an actual wastewater treatment plant. Approximately 40% of the injected NP1EO was converted to NP. (2) NP1EC was injected to an anaerobic digestion testing apparatus with thickened sludge. As a result, almost all injected NP1EC was converted to NP. When NP2EC was injected, NP2EC was not converted to NP until the 20th day.


OALib ◽  
2021 ◽  
Vol 08 (04) ◽  
pp. 1-23
Author(s):  
Aaron Bizimana ◽  
Bing Wu ◽  
Aicha Abdallah Idriss

2014 ◽  
Vol 37 (2) ◽  
pp. 159-163
Author(s):  
Bijaya Nanda Naik ◽  
Harison Masih ◽  
Ajaya Singh

The aerobic thermophilic sewage sludge treatment process was studied at various bioreactor scales through modified bioengineering design approach. The effectiveness of the biological system was controlled by varying the process operating conditions of bioreactor to enhance microbial degradation efficiency. The inactivation of pathogen each promoted by increase of temperature, while the residual CFU was lowered by reducing the total solids content of sewage sludge. The optimum sludge degradation through aerobic thermophilic process occurred in temperature range of 58 - 62oC but temperature more than 60oC was suitable for hygienic inactivation. Dual digestion systems of an aerobic theromophilic treatment followed by anaerobic thermophilic stabilization stage shows greater treatment and efficiency in degrading the organic sludge constituting up to seventy per cent. DOI: http://dx.doi.org/10.3329/jbas.v37i2.17556 Journal of Bangladesh Academy of Sciences, Vol. 37, No. 2, 159-163, 2013


2018 ◽  
Vol 78 (12) ◽  
pp. 2597-2607
Author(s):  
Fanzhe Zeng ◽  
Wenbiao Jin ◽  
Qingliang Zhao

Abstract A novel sewage sludge treatment process is developed in which sludge anaerobically phosphorus (P) released with the temperature control/ultrasonic treatment and recovery with human urine are incorporated to a conventional anaerobic/aerobic (A/O) process. The results showed that temperature affected the anaerobic P release and the maximum orthophosphate (PO43–P) release rate was 21.68 mg PO43–P/(g MLVSS.h) at 20 °C. The optimal specific energy of ultrasonic treatment was 15,000 kJ/kg TS, at which the solubilization degree of soluble chemical oxygen demand (SCOD) was 37.93%, which verified that the anaerobic sludge flocs were broken and the organic matter was obviously released. Human urine and P-rich sludge stream could be verified as a feasible way of P recovery in the form of struvite. The output of P in the combined A/O treatment process consisted of three pathways (i.e., effluent wastewater, sewage sludge, and P recovery). The influent P could be recovered by 22.84% and about 1.48 g/d potential struvite could be recovered from the anaerobic sludge flow using 0.27 L/d-human urine. The mass balances of COD and nitrogen (N) indicated that the combined A/O process also improved the organic mineralization and the removal of N.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6262 ◽  
Author(s):  
Roberta Ferrentino ◽  
Fabio Merzari ◽  
Luca Fiori ◽  
Gianni Andreottola

The present study addresses the coupling of hydrothermal carbonization (HTC) with anaerobic digestion (AD) in wastewater treatment plants. The improvement in biomethane production due to the recycling back to the anaerobic digester of HTC liquor and hydrochar generated from digested sludge is investigated and proved. Mixtures of different compositions of HTC liquor and hydrochar, as well as individual substrates, were tested. The biomethane yield reached 102 ± 3 mL CH4 g−1 COD when the HTC liquor was cycled back to the AD and treated together with primary and secondary sludge. Thus, the biomethane production was almost doubled compared to that of the AD of primary and secondary sludge (55 ± 20 mL CH4 g−1 COD). The benefit is even more significant when both the HTC liquor and the hydrochar were fed to the AD of primary and secondary sludge. The biomethane yield increased up to 187 ± 18 mL CH4 g−1 COD when 45% of hydrochar, with respect to the total feedstock, was added. These results highlight the improvement that the HTC process can bring to AD, enhancing biomethane production and promoting a sustainable solution for the treatment of the HTC liquor and possibly the hydrochar itself.


2015 ◽  
Vol 49 (8) ◽  
pp. 4781-4782 ◽  
Author(s):  
Leiyu Feng ◽  
Jingyang Luo ◽  
Yinguang Chen

Sign in / Sign up

Export Citation Format

Share Document