scholarly journals Bioengineering approach for sewage sludge degradation through aerobic thermophilic process

2014 ◽  
Vol 37 (2) ◽  
pp. 159-163
Author(s):  
Bijaya Nanda Naik ◽  
Harison Masih ◽  
Ajaya Singh

The aerobic thermophilic sewage sludge treatment process was studied at various bioreactor scales through modified bioengineering design approach. The effectiveness of the biological system was controlled by varying the process operating conditions of bioreactor to enhance microbial degradation efficiency. The inactivation of pathogen each promoted by increase of temperature, while the residual CFU was lowered by reducing the total solids content of sewage sludge. The optimum sludge degradation through aerobic thermophilic process occurred in temperature range of 58 - 62oC but temperature more than 60oC was suitable for hygienic inactivation. Dual digestion systems of an aerobic theromophilic treatment followed by anaerobic thermophilic stabilization stage shows greater treatment and efficiency in degrading the organic sludge constituting up to seventy per cent. DOI: http://dx.doi.org/10.3329/jbas.v37i2.17556 Journal of Bangladesh Academy of Sciences, Vol. 37, No. 2, 159-163, 2013

2007 ◽  
Vol 2 (1) ◽  
Author(s):  
A. Meda ◽  
C. Schaum ◽  
M. Wagner ◽  
P. Cornel ◽  
A. Durth

TIn 2004, the German Association for Wastewater, Water and Waste (DWA) carried out a survey about the current status of sewage sludge treatment and disposal in Germany. The study covered about one third of the wastewater treatment plants and about two thirds of the entire treatment capacity (expressed in population equivalents) in Germany. This provides an up-to-date and representative database. The paper presents the most important results regarding sludge treatment, process engineering, current disposal paths and sewage sludge quality.


2006 ◽  
Vol 53 (11) ◽  
pp. 221-226 ◽  
Author(s):  
M. Minamiyama ◽  
S. Ochi ◽  
Y. Suzuki

Many environmental problems caused by endocrine disruptors (EDs) have been reported. It is reported that EDs flow into sewage treatment plants, and it has been pointed out that these may be shifted from the wastewater treatment process to the sludge treatment process. Little is known about the fate of EDs accumulated in sewage sludge, so we carried out a study to clarify the fate of EDs in sewage sludge treatment processes, especially in an anaerobic digestion process. In this study, nonylphenol (NP) was selected as a target ED. Nonylphenol ethoxylates (NPnEO) or nonylphenoxy acetic acids (NPnEC), which were the precursor of NP, were added to an anaerobic digestion process, and mass balance was investigated. The following results were obtained from the anaerobic digestion experiments. (1) NP1EO was injected to an anaerobic digestion testing apparatus that was operated at a retention time of approximately 28 d and a temperature of 35 °C with thickened sludge sampled from an actual wastewater treatment plant. Approximately 40% of the injected NP1EO was converted to NP. (2) NP1EC was injected to an anaerobic digestion testing apparatus with thickened sludge. As a result, almost all injected NP1EC was converted to NP. When NP2EC was injected, NP2EC was not converted to NP until the 20th day.


2018 ◽  
Vol 78 (12) ◽  
pp. 2597-2607
Author(s):  
Fanzhe Zeng ◽  
Wenbiao Jin ◽  
Qingliang Zhao

Abstract A novel sewage sludge treatment process is developed in which sludge anaerobically phosphorus (P) released with the temperature control/ultrasonic treatment and recovery with human urine are incorporated to a conventional anaerobic/aerobic (A/O) process. The results showed that temperature affected the anaerobic P release and the maximum orthophosphate (PO43–P) release rate was 21.68 mg PO43–P/(g MLVSS.h) at 20 °C. The optimal specific energy of ultrasonic treatment was 15,000 kJ/kg TS, at which the solubilization degree of soluble chemical oxygen demand (SCOD) was 37.93%, which verified that the anaerobic sludge flocs were broken and the organic matter was obviously released. Human urine and P-rich sludge stream could be verified as a feasible way of P recovery in the form of struvite. The output of P in the combined A/O treatment process consisted of three pathways (i.e., effluent wastewater, sewage sludge, and P recovery). The influent P could be recovered by 22.84% and about 1.48 g/d potential struvite could be recovered from the anaerobic sludge flow using 0.27 L/d-human urine. The mass balances of COD and nitrogen (N) indicated that the combined A/O process also improved the organic mineralization and the removal of N.


2010 ◽  
Vol 25 (2) ◽  
pp. 185-194
Author(s):  
Anna Svedberg ◽  
Tom Lindström

Abstract A pilot-scale fourdrinier former has been developed for the purpose of investigating the relationship between retention and paper formation (features, retention aids, dosage points, etc.). The main objective of this publication was to present the R-F (Retention and formation)-machine and demonstrate some of its fields of applications. For a fine paper stock (90% hardwood and 10% softwood) with addition of 25% filler (based on total solids content), the relationship between retention and formation was investigated for a microparticulate retention aid (cationic polyacrylamide together with anionic montmorillonite clay). The retention-formation relationship of the retention aid system was investigated after choosing standardized machine operating conditions (e.g. the jet-to-wire speed ratio). As expected, the formation was impaired when the retention was increased. Since good reproducibility was attained, the R-F (Retention and formation)-machine was found to be a useful tool for studying the relationship between retention and paper formation.


2007 ◽  
Vol 2 (1) ◽  
Author(s):  
Petia Mijaylova Nacheva ◽  
G. Moeller-Chávez ◽  
E. Ramírez-Camperos ◽  
L. Cardoso-Vigueros

The tropical regions have specific problems associated with high pathogenic density in the sewage sludge. The aim of this study was to select an adequate sludge stabilization and valorization system comparing the performance of four technologies: anaerobic stabilization without heating, aerobic stabilization, alkaline treatment with lime and aerobic composting. The study was performed in a pilot plant which was built and operated during six months. The main problem for the beneficial use of the sludge was its pathogenicity. All the systems allowed obtaining stabilized products which met the bacteriological criteria for some kind of use. The compost and the alkalinized sludge were bacteriologically safe for use without restrictions in accordance with the Mexican regulations. The accomplishment of the parasitological criteria for use was however impossible with the anaerobic and with the aerobic systems. The compost obtained at 55-60°C with 25d aeration time and the alkaline sludge fulfill the criteria established by for forest and agriculture use and for soil conditioning. The composting could reach the requirements for unrestricted use when operated at temperatures 65-70°C during 45 days which makes it the most adequate sludge treatment system for hot climate regions.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2697
Author(s):  
Gabriel Gerner ◽  
Luca Meyer ◽  
Rahel Wanner ◽  
Thomas Keller ◽  
Rolf Krebs

Phosphorus recovery from waste biomass is becoming increasingly important, given that phosphorus is an exhaustible non-renewable resource. For the recovery of plant nutrients and production of climate-neutral fuel from wet waste streams, hydrothermal carbonization (HTC) has been suggested as a promising technology. In this study, digested sewage sludge (DSS) was used as waste material for phosphorus and nitrogen recovery. HTC was conducted at 200 °C for 4 h, followed by phosphorus stripping (PS) or leaching (PL) at room temperature. The results showed that for PS and PL around 84% and 71% of phosphorus, as well as 53% and 54% of nitrogen, respectively, could be recovered in the liquid phase (process water and/or extract). Heavy metals were mainly transferred to the hydrochar and only <1 ppm of Cd and 21–43 ppm of Zn were found to be in the liquid phase of the acid treatments. According to the economic feasibility calculation, the HTC-treatment per dry ton DSS with an industrial-scale plant would cost around 608 USD. Between 349–406 kg of sulfuric acid are required per dry ton DSS to achieve a high yield in phosphorus recovery, which causes additional costs of 96–118 USD. Compared to current sewage sludge treatment costs in Switzerland, which range between 669 USD and 1173 USD, HTC can be an economically feasible process for DSS treatment and nutrient recovery.


2021 ◽  
Vol 333 ◽  
pp. 125114
Author(s):  
Israel Díaz ◽  
Alina Díaz-Curbelo ◽  
Kevin Ignacio Matute ◽  
María Fdz-Polanco ◽  
Sara Isabel Pérez-Elvira

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 276
Author(s):  
Francesco Facchini ◽  
Giovanni Mummolo ◽  
Micaela Vitti

The sewage sludges are the byproducts of the wastewater treatment. The new perspective of the wastewater value chain points to a sustainable circular economy approach, where the residual solid material produced by sewage sludge treatments is a resource rather than a waste. A sewage sludge treatment system consists of five main phases; each of them can be performed by different alternative processes. Each process is characterized by its capability to recover energy and/or matter. In this paper, a state of the art of the sludge-to-energy and sludge-to-matter treatments is provided. Then, a scenario analysis is developed to identify suitable sewage sludge treatments plants that best fit the quality and flowrate of sewage sludge to be processed while meeting technological and economic constraints. Based on the scientific literature findings and experts’ opinions, the authors identify a set of reference initial scenarios and the corresponding best treatments’ selection for configuring sewage sludge treatment plants. The scenario analysis reveals a useful reference technical framework when circular economy goals are pursued. The results achieved in all scenarios ensure the potential recovery of matter and/or energy from sewage sludges processes.


Sign in / Sign up

Export Citation Format

Share Document