Construction and maintenance cost analyzing of constructed wetland systems

2011 ◽  
Vol 6 (3) ◽  
Author(s):  
K. Gunes ◽  
B. Tuncsiper ◽  
F. Masi ◽  
S. Ayaz ◽  
D. Leszczynska ◽  
...  

Nowadays, use of constructed wetlands for wastewater treatment especially in rural areas has become increasingly preferable. The most important reason behind this fact is its relatively low investment cost over other treatment options depending on economical conditions of the country. Nonetheless, due to lower operational costs of constructed wetlands than other conventional wastewater treatment systems, investment costs could be regarded secondary as of importance. Investment costs could show differences even at regional scale in a country. Choosing a constructed wetland system among “Subsurface Horizontal Flow”, “Subsurface Vertical Flow” or “Free Water Surface Flow”; or designing a hybrid system using concurrent systems plays important role when defining costs of the constructed wetland systems. Due to increasing interest for constructed wetlands since 2003, so many constructed wetland systems have been built in rural parts of Turkey and most of these systems have been designed as horizontal subsurface flow constructed wetland system. As a fact, the cost of horizontal subsurface flow constructed wetlands is comparatively higher than other wetland systems. When different applications in the world are examined, it is observed that mostly horizontal subsurface flow constructed wetland systems are preferred in rural areas. According to the studies within the extent of this work, different constructed wetland types which are built in different regions of Turkey and their expected and realized costs are analyzed and compared with other countries. Moreover, operational costs have been calculated. Consequently, a work to be taken as reference for further scientific studies has been prepared with presented wetland analyses which could be used by especially decision makers and researchers.

2010 ◽  
Vol 62 (3) ◽  
pp. 603-614 ◽  
Author(s):  
G. D. Gikas ◽  
V. A. Tsihrintzis

A small-scale horizontal subsurface flow constructed wetland, located in North Greece, was designed and constructed to treat wastewater from a single-family residence. A three-year monitoring program was undertaken to evaluate the performance of this system. The monitoring campaigns were organized every 7 days. Water quality samples were collected at the inlet, at intermediate points (i.e. at the end of each treatment stage) and at the outlet of the system. Temperature, electrical conductivity, pH and DO were measured in-situ with the use of appropriate instruments at the same points of water sample collection. Water samples were analyzed for BOD, COD, TKN, ammonia, nitrate, nitrite, total phosphorus (TP), ortho-phosphate (OP), total suspended solids (TSS) and total coliforms (TC). Mean removal efficiencies for the monitoring period were: 86.5% for BOD, 84.6% for COD, 83.7% for TKN, 82.2% for ammonia, 63.1% for OP, 63.3% for TP, 79.3% for TSS and 99.9% for TC. Furthermore, based on statistical testing, TKN, ammonia and TP removal efficiencies showed dependence on temperature. The paper presents facility description, study details and monitoring results. The study shows that the use of constructed wetlands in wastewater treatment is a good option for single-family residences in rural areas.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 865 ◽  
Author(s):  
Lei Zheng ◽  
Tingting Liu ◽  
En Xie ◽  
Mingxue Liu ◽  
Aizhong Ding ◽  
...  

When used as highly produced chemicals and widely used plasticizers, Phthalate acid esters (PAEs) have potential risks to human life and the environment. In this study, to assess the distribution and fate of PAEs, specifically inside a full-scale horizontal subsurface flow constructed wetland, four PAEs including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and bis (2-ethylhexyl) phthalate (DEHP) were investigated. In effluent, PAEs concentration decreased 19.32% (DMP), 19.18% (DEP), 19.40% (DBP), and 48.56% (DEHP), respectively. Within the wetland, PAEs partitioned in water (0.18–1.12 μg/L, 35.38–64.92%), soil (0.44–5.08 μg/g, 1.02–31.33%), plant (0.68–48.6 μg/g, 0.85–36.54%), air and biological transformation (2.72–33.21%). The results indicated that soil and plant adsorption contributed to the majority of PAE removal, digesting DMP (19.32%), DEP (19.18%), DBP (19.40%), and DEHP (48.56%) in constructed wetlands. Moreover, the adsorption was affected by both octanol/water partition coefficient (Kow) and transpiration stream concentration factors (TSCF). This work, for the first time, revealed the partition and fate of PAEs in constructed wetlands to the best of our knowledge.


2018 ◽  
Vol 4 (0) ◽  
Author(s):  
Nelson Mbanefo Okoye ◽  
Chimaobi Nnaemeka Madubuike ◽  
Ifeanyi Uba Nwuba ◽  
Sampson Nonso Ozokoli ◽  
Boniface Obi Ugwuishiwu

Wastewater treatment using constructed wetlands is one of the effective and low-cost technologies to improve the quality of slaughterhouse effluent. This study was carried out to investigate the suitability of palm kernel shell as a substrate material for constructed wetlands treating slaughterhouse wastewater. Rhizomes of Thalia Geniculata and Typha Latifolia were grown in four pilot horizontal subsurface flow constructed wetland beds filled with palm kernel shell and grave, and their growth and treatment performance evaluated. The results of the study showed that Thalia Geniculata survives and proliferates in palm kernel shell bed. The mean removal rates of 72.81% (BOD5), 89.87% (TSS), 39.42% (NH4-N), 60.79% (NO3-N) and 42.52% (PO43-) for the palm kernel shell were comparable to the values obtained for the gravel bed. The study proved that palm kernel shell, as a substrate material in constructed wetlands had the potentials to sustain the growth of some macrophytes, as well as the capacity to remove contaminants from wastewater.


2021 ◽  
Vol 12 (2) ◽  
pp. 13-27
Author(s):  
Zuhal A. Hamza ◽  
◽  
Wisam S. Al-Rekabi ◽  
Azraa M. Ajell ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document