butyl phthalate
Recently Published Documents


TOTAL DOCUMENTS

635
(FIVE YEARS 149)

H-INDEX

52
(FIVE YEARS 8)

2022 ◽  
Vol 12 ◽  
Author(s):  
Michael B. Morgan ◽  
James Ross ◽  
Joseph Ellwanger ◽  
Rebecca Martin Phrommala ◽  
Hannah Youngblood ◽  
...  

Endocrine disruption is suspected in cnidarians, but questions remain how occurs. Steroid sex hormones are detected in corals and sea anemones even though these animals do not have estrogen receptors and their repertoire of steroidogenic enzymes appears to be incomplete. Pathways associated with sex hormone biosynthesis and sterol signaling are an understudied area in cnidarian biology. The objective of this study was to identify a suite of genes that can be linked to exposure of endocrine disruptors. Exaiptasia diaphana were exposed to nominal 20ppb concentrations of estradiol (E2), testosterone (T), cholesterol, oxybenzone (BP-3), or benzyl butyl phthalate (BBP) for 4 h. Eleven genes of interest (GOIs) were chosen from a previously generated EST library. The GOIs are 17β-hydroxysteroid dehydrogenases type 14 (17β HSD14) and type 12 (17β HSD12), Niemann-Pick C type 2 (NPC2), Equistatin (EI), Complement component C3 (C3), Cathepsin L (CTSL), Patched domain-containing protein 3 (PTCH3), Smoothened (SMO), Desert Hedgehog (DHH), Zinc finger protein GLI2 (GLI2), and Vitellogenin (VTG). These GOIs were selected because of functional associations with steroid hormone biosynthesis; cholesterol binding/transport; immunity; phagocytosis; or Hedgehog signaling. Quantitative Real-Time PCR quantified expression of GOIs. In silico modelling utilized protein structures from Protein Data Bank as well as creating protein structures with SWISS-MODEL. Results show transcription of steroidogenic enzymes, and cholesterol binding/transport proteins have similar transcription profiles for E2, T, and cholesterol treatments, but different profiles when BP-3 or BBP is present. C3 expression can differentiate between exposures to BP-3 versus BBP as well as exposure to cholesterol versus sex hormones. In silico modelling revealed all ligands (E2, T, cholesterol, BBP, and BP-3) have favorable binding affinities with 17β HSD14, 17β HSD12, NPC2, SMO, and PTCH proteins. VTG expression was down-regulated in the sterol treatments but up-regulated in BP-3 and BBP treatments. In summary, these eleven GOIs collectively generate unique transcriptional profiles capable of discriminating between the five chemical exposures used in this investigation. This suite of GOIs are candidate biomarkers for detecting transcriptional changes in steroidogenesis, gametogenesis, sterol transport, and Hedgehog signaling. Detection of disruptions in these pathways offers new insight into endocrine disruption in cnidarians.


2021 ◽  
Author(s):  
Mingqing Wang ◽  
Lina Yu ◽  
Jie Sun ◽  
Jie Bi ◽  
Yu Song ◽  
...  

Abstract Di-n-butyl phthalate (DBP) is commonly used plasticizers in agricultural plastic films, and is a priority pollutant due to its toxicity to human health. A newly isolated strain J2, which used DBP as its sole carbon source, was screened from peanut filed soil by continuous enrichment cultivation. Based on morphological, physiological characteristics and 16S rRNA gene sequence analysis (GenBank accession No. OK598965), it was identified as Priestia sp. J2. The research results revealed the optimal conditions for DBP degradation as 35 oC and pH 8.0. The strain could effectively degrade 97.6% DBP within 5 days. Substrate tests showed that strain J2 could utilize shorter side-chained PAEs, but could not utilize long-chained PAEs. The whole genome comprises a complete chromosome of 5,067,299 bp and four plasmids of 147,924 bp, 75,940 bp, 11,604 bp, 11,333 bp (GenBank accession No. CP086208-CP086212). This genome harbors 5,585 predicted protein-encoding genes, 130 tRNA genes, and 42 rRNA genes. Gene annotation analyses showed a DBP-degrading gene contained an open reading frame of 930 bp, and the enzyme was named Est-J2-1. The amino acid sequence of the Est-J2-1 exhibited no significant homology with those of reported DBP-degrading enzymes, suggesting the enzyme is a novel enzyme. The gene of Est-J2-1 was found to be located on the chromosome. This study provided strain resource for DBP removal from farmland and other environments.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6966
Author(s):  
Daniel Wolecki ◽  
Barbara Trella ◽  
Fei Qi ◽  
Piotr Stepnowski ◽  
Jolanta Kumirska

Phthalic acid esters (PAEs) have a negative impact on living organisms in the environment, therefore, are among the group of Endocrine Disrupting Compounds (ECDs). Unfortunately, conventional methods used in municipal wastewater treatment plants (MWWTPs) are not designed to eliminate PAEs. For this reason, the development of cheap and simple but very effective techniques for the removal of such residues from wastewater is crucial. The main aim of this study was the evaluation of the removal of six selected PAEs: diethyl phthalate (DEP), di-n-octyl phthalate (DOP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP) and dimethyl phthalate (DMP), in real MWWTPs supported by constructed wetlands (MWWTP–CW system). For the first time, the possibility of using three new plants for this purpose, Cyperus papyrus (papyrus), Lysimachia nemorum (yellow pimpernel) and Euonymus europaeus (European spindle), has been presented. For determining the target PAEs in wastewater samples, a method of SPE (Solid-Phase Extraction)–GC–MS(SIM) was developed and validated, and for plant materials, a method of UAE (Ultrasound-Assisted Extraction)–SPE–GC–MS(SIM) was proposed. The obtained data showed that the application of the MWWTP–CW system allows a significant increase in the removal of DEP, DBP, BBP and DEHP from the wastewater stream. Euonymus europaeus was the most effective among the tested plant species for the uptake of analytes (8938 ng × g−1 dry weight), thus, this plant was found to be optimal for supporting conventional MWWTPs.


2021 ◽  
Vol 19 (10) ◽  
pp. 121-126
Author(s):  
Seemma Hamed Ahmed ◽  
Mumin Fareed Hamad Al-Samarrai ◽  
Imad Tarek Hanoon ◽  
Afrah Saad Salih

The research aims to prepare a new ionic membrane selective electrode for NYM Neomycin based on tungstophosphoric acid (TPA), Poly Vinyl Chloride (PVC) and DPPH (Di-Butyl Phthalate). It was found that the electrode is sensitive to concentrations ranging between (1 x 10-1-1 x 10-5) mol/L, and it gave a Nernstian response of (29.7 mV/decade) and a correlation coefficient (r) of (0.9939). The factors affecting the response of the electrode were studied, as it was found that the best concentration of the internal filling solution was (1 x 10-3) mol/L, and that the best pH range in which the electrode worked was between (3.5-1.5) and the best Nernstian response at pH (pH = 2.5) The effect of temperature was also studied, as it was found that the best temperature was (25°C) and the response time of the electrode was between (20-40) seconds. It was also found that the chronological age of the electrode was (25) days. The selectivity coefficient (Ki,jpot) was calculated in the presence of negative and positively charged interfering ions.


Author(s):  
Mariana Segovia-Mendoza ◽  
Margarita Isabel Palacios-Arreola ◽  
Lenin Pavón ◽  
Enrique Becerril ◽  
Karen Elizabeth Nava-Castro ◽  
...  

Public concern has emerged about the effects of endocrine disruptor compounds (EDCs) on neuropsychiatric disorders. Preclinical evidence suggests that exposure to EDCs is associated with the development of the major depressive disorder (MDD) and could result in neural degeneration. The interaction of EDCs with hormonal receptors is the best-described mechanism of their biological activity. However, the dysregulation of the hypothalamic-pituitary-gonadal adrenal axis has been reported and linked to neurological disorders. On the other hand, at a worldwide level and in Mexico, the incidence of MDD has recently been increasing. Of note, in Mexico, there are no clinical associations on blood levels of EDCs and the incidence of the MDD. Methodology: Thus, we quantified for the first time the serum levels of parent compounds of two bisphenols and four phthalates in patients with MDD. Results: The levels of di-ethyl-hexyl-phthalate (DEHP), butyl-benzyl-phthalate (BBP), di-n-butyl phthalate (DBP), and di-ethyl-phthalate (DEP), bisphenol A (BPA), and bisphenol S (BPS) were determined with a gas chromatograph-mass spectrometer. Results/ conclusion: We found significant differences between concentrations of BBP between controls and patients with MDD.


Ecotoxicology ◽  
2021 ◽  
Author(s):  
Sophie Barbagallo ◽  
Cassidy Baldauf ◽  
Emily Orosco ◽  
Nicole M. Roy

2021 ◽  
Author(s):  
S. Shariati ◽  
C. Ebenau-Jehle ◽  
A. A. Pourbabaee ◽  
H. A. Alikhani ◽  
M. Rodriguez-Franco ◽  
...  

AbstractPhthalic acid esters are predominantly used as plasticizers and are industrially produced on the million ton scale per year. They exhibit endocrine-disrupting, carcinogenic, teratogenic, and mutagenic effects on wildlife and humans. For this reason, biodegradation, the major process of phthalic acid ester elimination from the environment, is of global importance. Here, we studied bacterial phthalic acid ester degradation at Saravan landfill in Hyrcanian Forests, Iran, an active disposal site with 800 tons of solid waste input per day. A di-n-butyl phthalate degrading enrichment culture was established from which Paenarthrobacter sp. strain Shss was isolated. This strain efficiently degraded 1 g L–1 di-n-butyl phthalate within 15 h with a doubling time of 5 h. In addition, dimethyl phthalate, diethyl phthalate, mono butyl phthalate, and phthalic acid where degraded to CO2, whereas diethyl hexyl phthalate did not serve as a substrate. During the biodegradation of di-n-butyl phthalate, mono-n-butyl phthalate was identified in culture supernatants by ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. In vitro assays identified two cellular esterase activities that converted di-n-butyl phthalate to mono-n-butyl phthalate, and the latter to phthalic acid, respectively. Our findings identified Paenarthrobacter sp. Shss amongst the most efficient phthalic acid esters degrading bacteria known, that possibly plays an important role in di-n-butyl phthalate elimination at a highly phthalic acid esters contaminated landfill.


Sign in / Sign up

Export Citation Format

Share Document