Treatment of Sago Wastewater using Hybrid Anaerobic Reactor

2006 ◽  
Vol 41 (1) ◽  
pp. 56-62 ◽  
Author(s):  
J. Rajesh Banu ◽  
Sudalyandi Kaliappan ◽  
Dieter Beck

Abstract Sago, tapioca starch, is manufactured by over 800 small-scale units located in the Salem district of the State of Tamilnadu, South India. These units generate large quantities of high-strength wastewater requiring elaborate treatment prior to disposal. The present study is an attempt to treat the sago wastewater using a hybrid reactor, which combines the advantages of both fixed-film and up-flow anaerobic sludge blanket systems. A hybrid reactor with a volume of 5.9 L was operated at organic loading rates varying from 10.4 to 24.6 kg COD/m3d. After 120 d of start-up, an appreciable decrease in COD and efficient removal of solids were evident. The COD removal varied from 91 to 83%. While the removal of total solids was in the range of 56 to 63%, that of volatile solids varied from 67 to 72%. The methane production during the study period was in the range of 0.11 to 0.14 L CH4/g COD-d and the percentage was from 55 to 67%. The ideal organic loading rate (OLR) was determined on the basis of tolerance of the reactor towards higher organic loading rate and it was found to be 23.4 kg COD/m3d. The findings of the study open new possibilities for the design of low-cost and compact on-site treatment systems with very short retention periods.

2017 ◽  
Vol 76 (9) ◽  
pp. 2268-2279 ◽  
Author(s):  
Henrique Vieira de Mendonça ◽  
Jean Pierre Henry Balbaud Ometto ◽  
Marcelo Henrique Otenio ◽  
Alberto José Delgado dos Reis ◽  
Isabel Paula Ramos Marques

Abstract New data on biogas production and treatment of cattle wastewater were registered using an upflow anaerobic sludge blanket-anaerobic filter (UASB-AF) hybrid reactor under mesophilic temperature conditions (37 °C). The reactor was operated in semi-continuous mode with hydraulic retention times of 6, 5, 3 and 2 days and organic loading rates of 3.8, 4.6, 7.0 and 10.8 kg CODt m−3 d−1. Biogas volumes of 0.6–0.8 m3 m−3 d−1 (3.8–4.6 kg CODt m−3 d−1) and 1.2–1.4 m3 m−3 d−1 (7.0–10.8 kg CODt m−3 d−1), with methane concentrations between 69 and 75%, were attained. The removal of organic matter with values of 60–81% (CODt) and 51–75% (CODs) allowed methane yields of 0.155–0.183 m3 CH4 kg−1 CODt and 0.401–0.513 m3 CH4 kg−1 CODs to be obtained. Volatile solids were removed in 34 to 69%, with corresponding methane yields of 0.27 to 0.42 m3 CH4 kg−1 VSremoved. The good performance of the novel hybrid reactor was demonstrated by biogas outputs higher than reported previously in the literature, along with the quality of the gas obtained in the various experimental phases. The hybrid reactor investigated in this study presents comparative advantages, particularly in relation to conventional complete mixture units, considering economic factors such as energy consumption, reactor volume and installation area.


2018 ◽  
Vol 268 ◽  
pp. 158-168 ◽  
Author(s):  
Wilmar Alirio Botello Suárez ◽  
Juliana da Silva Vantini ◽  
Rose Maria Duda ◽  
Poliana Fernanda Giachetto ◽  
Leandro Carrijo Cintra ◽  
...  

2011 ◽  
Vol 71-78 ◽  
pp. 2103-2106
Author(s):  
Ming Yue Zheng ◽  
Ming Xia Zheng ◽  
Kai Jun Wang ◽  
Hai Yan

The performance of upflow anaerobic sludge blanket (UASB) fed with three metabolic intermediate (acetate, ethanol, and propionate) respectively was studied. The degradation of metabolic intermediate were investigated to discuss the reason for propionate inhibition problem in anaerobic treatment. The hydraulic retention time (HRT) in the reactors started with 8.0h.The yield rate of biogas were 237ml/gCOD, 242ml/gCOD, 218ml/gCOD for acetate, ethanol and propionate, respectively when finishing start-up under OLR of 5.0 kgCOD/(m3·d) (HRT=9.6h).The HRT remained constant 9.6h,and the substrate concentration was gradually increased from 1,000 to 16,000mg/L as COD,and the organic loading rates(OLR) was from 3.0 to 40.0 kgCOD/(m3·d).The maximum propionate concentration was 41.6 gHPr-COD/L at the organic loading rate of 43.9 kgCOD/(m3·d) (HRT, 9.6h) as well as acetate and ethanol.


2017 ◽  
Vol 12 (3) ◽  
pp. 501-513 ◽  
Author(s):  
Shuai. Wang ◽  
Nirmal. Ghimire ◽  
Gang. Xin ◽  
Eshetu. Janka ◽  
Rune. Bakke

Performance of a pilot scale Hybrid Vertical Anaerobic Biofilm (HyVAB) reactor treating petrochemical refinery wastewater is presented here. The reactor is an integration of a bottom anaerobic sludge bed and a top aerobic biofilm stage and was operated continuously for 92 days at 21 ± 2 °C. Wastewater was fed continuously to the reactor with step flow increases reducing hydraulic retention time from 55 to 12 hours, increasing organic loading rate from 3 to 33 kg-COD/m3·d. The HyVAB removed on average 91% and 86% of the soluble and total feed COD, respectively, at steady state and loads up to 23 kg-COD/m3·d, of which 98% of the soluble COD removal occurred in the anaerobic stage. Methane yield ranged from 0.29 to 0.51 L/g-COD removed, including conversion of settled aerobic sludge to methane. Sludge production was low (0.04 kg-VSS/kg-COD removed) and biogas methane content high (84 ± 2%). The results demonstrated that HyVAB is an efficient, low footprint alternative for high strength wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document