metabolic intermediate
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 44)

H-INDEX

29
(FIVE YEARS 3)

Author(s):  
Yuki Ishiwata-Kimata ◽  
Quynh Giang Le ◽  
Yukio Kimata

Phosphatidylcholine (PC) is produced via two distinct pathways in both hepatocytes and yeast, Saccharomyces cerevisiae. One of these pathways involves the sequential methylation of phosphatidylethanolamine (PE). In yeast cells, the methyltransferase, Cho2, converts PE to phosphatidylmonomethylethanolamine (PMME), which is further modified to PC by another methyltransferase, Opi3. On the other hand, free choline is utilized for PC production via the Kennedy pathway. The blockage of PC production is well known to cause endoplasmic reticulum (ER) stress and activate the ER-stress sensor, Ire1, to induce unfolded protein response (UPR). Here, we demonstrate that even when free choline is sufficiently supplied, the opi3Δ mutation, but not the cho2 Δ mutation, induces the UPR. The UPR was also found to be induced by CHO2 overexpression. Further, monomethylethanolamine, which is converted to PMME probably through the Kennedy pathway, caused or potentiated ER stress in both mammalian and yeast cells. We thus deduce that PMME per se is an ER-stressing molecule. Interestingly, spontaneously accumulated PMME seemed to aggravate ER stress in yeast cells. Collectively, our findings demonstrate the multiple detrimental effects of the low-abundance phospholipid species, PMME.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lei Xia ◽  
Hairong Zhang ◽  
Xuezhen Wang ◽  
Xiaoyu Zhang ◽  
Ke Nie

Ovarian cancer is one of the most common malignancies and the highest mortality among gynecological malignancy. The standard therapy options for patients with ovarian cancer are cytoreductive surgery and chemotherapy, and although most patients do better with standard treatment, it is easy to relapse and be resistant to chemotherapy. Therefore, it is important to find new therapeutic strategies. More recently, metabolic reprogramming has been recognized as a hallmark of cancer and has become a potential target for tumor therapy. Mutations of metabolic enzymes are closely related to the development of ovarian cancer. The metabolic reprogramming of ovarian cancer not only provides energy to tumor cells, but also participates in various biological processes as signaling molecules. Succinic acid (SA) is an important metabolic intermediate involved in a number of metabolic pathways, such as TCA cycle and glutamine metabolism, and is also widely present in a variety of plants and vegetables. Studies show abnormal SA metabolism in many tumors and affect tumor formation through a variety of mechanisms. But the role of SA in ovarian cancer is less studied. This paper reviews the role of SA and its abnormal metabolic pathway in ovarian cancer.


2021 ◽  
pp. jmedgenet-2021-107729
Author(s):  
Lucia Laugwitz ◽  
Annette Seibt ◽  
Diran Herebian ◽  
Susana Peralta ◽  
Imke Kienzle ◽  
...  

BackgroundHuman coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency.MethodsClinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed.ResultsWe characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone.ConclusionOur study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Miaomiao Tian ◽  
Fengqi Hao ◽  
Xin Jin ◽  
Xue Sun ◽  
Ying Jiang ◽  
...  

Inducible regulatory T (iTreg) cells play a central role in immune suppression. As iTreg cells are differentiated from activated T (Th0) cells, cell metabolism undergoes dramatic changes, including a shift from fatty acid synthesis (FAS) to fatty acid oxidation (FAO). Although the reprogramming in fatty acid metabolism is critical, the mechanism regulating this process during iTreg differentiation is still unclear. Here we have revealed that the enzymatic activity of ATP-citrate lyase (ACLY) declined significantly during iTreg differentiation upon transforming growth factor β1 (TGFβ1) stimulation. This reduction was due to CUL3-KLHL25-mediated ACLY ubiquitination and degradation. As a consequence, malonyl-CoA, a metabolic intermediate in FAS that is capable of inhibiting the rate-limiting enzyme in FAO, carnitine palmitoyltransferase 1 (CPT1), was decreased. Therefore, ACLY ubiquitination and degradation facilitate FAO and thereby iTreg differentiation. Together, we suggest TGFβ1-CUL3-KLHL25-ACLY axis as an important means regulating iTreg differentiation and bring insights into the maintenance of immune homeostasis for the prevention of immune diseases.


Author(s):  
Pietro Cannazza ◽  
Antti Rissanen ◽  
Dieval Guizelini ◽  
Pauli Losoi ◽  
Essi Sarlin ◽  
...  

Komagataeibacter spp. have been used for the bioconversion of industrial wastes and lignocellulosic hydrolysates to bacterial cellulose (BC). Recently studies have demonstrated the capacity of Komagataeibacter spp. in the biotransformation of inhibitors found in lignocellulosic hydrolysates, aromatic lignin-derived monomers (LDMs) and acetate. In general, detoxification and BC synthesis from lignocellulosic inhibitors requires a carbon flow from acetyl-coA towards tricarboxylic acid and gluconeogenesis, respectively. However, the related molecular aspects have not yet been identified in Komagataeibacter spp. In this study, we isolated a cellulose producing bacteria capable of synthesizing BC in a minimal medium containing crude glycerol, a by-product from biodiesel production process. The isolate, affiliated to Komagataeibacter genus, synthesized cellulose in minimal medium containing glucose (3.3±0.3 g/L), pure glycerol (2.2±0.1 g/L) and crude glycerol (2.1±0.1 g/L). Genome assembly and annotation identified four copies of bacterial cellulose synthase operon and genes for redirecting the carbon from central metabolic pathway to gluconeogenesis. According to the genome annotations, a BC production route from acetyl-CoA, a central metabolic intermediate, was hypothesized and was validated using acetate. We identified that when K. rhaeticus ENS9b was grown in minimal medium supplemented with acetate, BC production was not observed. However, in presence of readily utilizable substrate, such as spent yeast hydrolysate, acetate supplementation improved BC synthesis.


2021 ◽  
Author(s):  
Kristin M Jacob ◽  
Gemma Reguera

The intermittent aeration of the middle ear seeds its mucosa with saliva aerosols and selects for a distinct community of commensals adapted to the otic microenvironment. We gained insights into the selective forces that enrich for specific groups of oral migrants in the middle ear mucosa by investigating the phylogeny and physiology of 19 strains enriched (Streptococcus) or transiently present (Staphylococcus, Neisseria and actinobacterial Micrococcus and Corynebacterium) in otic secretions. Phylogenetic analyses of full length 16S rRNA sequences resolved close relationships between the streptococcal strains and oral commensals as well as between the transient migrants and known nasal and oral species. Physiological functions that facilitate mucosal colonization (swarming motility, surfactant production) and nutrition (mucin and protein degradation) were widespread in all the otic cultivars, as was the ability of most of the isolates to grow both aerobically and anaerobically. However, streptococci stood out for their enhanced biofilm-forming abilities under oxic and anoxic conditions and for their efficient fermentation of mucosal substrates into lactate, a key metabolic intermediate in the otic trophic webs. Additionally, the otic streptococci inhibited the growth of common otopathogens, an antagonistic interaction that could exclude competitors and protect the middle ear mucosa from infections by transient pathobionts. These adaptive traits allow streptococcal migrants to colonize the otic mucosa and grow microcolonies with syntrophic anaerobic partners, establishing trophic webs with other commensals similar to those formed by the oral ancestors in buccal biofilms.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1073
Author(s):  
Mark R. Hellmich ◽  
Celia Chao ◽  
Katalin Módis ◽  
Ye Ding ◽  
John R. Zatarain ◽  
...  

Upregulation of hydrogen sulfide (H2S) biosynthesis, at least in part related to the upregulation of cystathionine β-synthetase (CBS) in cancer cells, serves as a tumor-promoting factor and has emerged as a possible molecular target for antitumor drug development. To facilitate future clinical translation, we have synthesized a variety of novel CBS-targeting, esterase-cleavable prodrugs based on the structure of the prototypical CBS inhibitor aminooxyacetic acid (AOAA). The pharmacological properties of these compounds were evaluated in cell-free assays with recombinant human CBS protein, the human colon cancer cell line HCT116, and in vivo using various tumor-bearing mice models. The prodrug YD0251 (the isopropyl ester derivative of AOAA) was selected for detailed characterization. YD0251 exhibits improved antiproliferative efficacy in cell culture models when compared to AOAA. It is up to 18 times more potent than AOAA at suppressing HCT116 tumor growth in vivo and is effective when administered to tumor-bearing mice either via subcutaneous injection or oral gavage. Patient-derived xenografts (PDTXs) with higher levels of CBS protein grew significantly larger than tumors with lower levels, and YD0251 treatment inhibited the growth of PDTXs with elevated CBS, whereas it had no significant effect on PDTXs with low CBS protein levels. The toxicity of YD0251 was assessed in mice subjected to subchronic administration of supratherapeutic doses the inhibitor; no significant alteration in circulating markers of organ injury or histopathological alterations were noted, up to 60 mg/kg/day × 5 days. In preparation to a future theranostic concept (to match CBS inhibitor therapy to high-CBS expressors), we identified a potential plasma marker of CBS-expressing tumors. Colon cancer cells produced significant levels of lanthionine, a rare metabolic intermediate of CBS-mediated H2S biosynthesis; forced expression of CBS into non-transformed epithelial cells increased lanthionine biogenesis in vitro and in vivo (measured in the urine of tumor-bearing mice). These current results may be useful to facilitate the translation of a CBS inhibition-based antitumor concept into the clinical space.


Author(s):  
Dina Suhail

The inadequacy to replace acetaminophen (APAP) with a more effective analgesic continues its use in therapeutic interventions, upholding the risk of hepatotoxicity. Depletion of glutathione reserves by a metabolic intermediate of acetaminophen, N-acetyl-p-benzoquinone imine (NAPQI), is the major reason. The current study presents the combinatorial effect of metformin, a biguanide, in ameliorating the APAP toxicity. HepG2 cells were used for in vitro studies and MTT and LDH leakage assays were used for viability assessment. 10 ?M of metformin improved the cell viability and membrane integrity of cells treated with a high antioxidant enzymes and reduced glutathione were significantly increased in cells co-administrated with metformin and acetaminophen


2021 ◽  
Author(s):  
Qiuli Shi ◽  
Yanjuan Chen ◽  
Xinxin Li ◽  
Hui Dong ◽  
Cheng Chen ◽  
...  

The bacterium Pseudomonas sp. AP-3 is able to use the environmental pollutant 2-aminophenol as its sole source of carbon, nitrogen, and energy. Eight genes (amnA, B, C, D, E, F, G, and H) encoding 2-aminophenol metabolizing enzymes are clustered into a single operon. 2-aminomuconic 6-semialdehyde dehydrogenase (AmnC), a member of the aldehyde dehydrogenase (ALDH) superfamily, is responsible for oxidizing 2-aminomuconic 6-semialdehyde to 2-aminomuconate. In contrast to many other members of the ALDH superfamily, the structural basis of the catalytic activity of AmnC remains elusive. Here, we present the crystal structure of AmnC, which displays a homotetrameric quaternary assembly that is directly involved in its enzymatic activity. The tetrameric state of AmnC in solution was also presented using small-angle X-ray scattering. The tetramerization of AmnC is mediated by the assembly of a protruding hydrophobic beta-strand motif and residues V121 and S123 located in the NAD+-binding domain of each subunit. Dimeric mutants of AmnC dramatically lose NAD+ binding affinity and enzyme activity, indicating that tetrameric assembly of AmnC is required for oxidizing the unstable metabolic intermediate 2-aminomuconic 6-semialdehyde to 2-aminomuconic acid in the 2-aminophenol metabolism pathway.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhennan Jiang ◽  
Zhiyong Cui ◽  
Ziwei Zhu ◽  
Yinghang Liu ◽  
Ya-jie Tang ◽  
...  

Abstract Background Succinic acid (SA) is a crucial metabolic intermediate and platform chemical. Development of biobased processes to achieve sustainable SA production has attracted more and more attention in biotechnology industry. Yarrowia lipolytica has a strong tricarboxylic acid cycle and tolerates low pH conditions, thus making it a potential platform for SA production. However, its SA titers in glucose media remain low. Results In this study, we screened mitochondrial carriers and C4-dicarboxylic acid transporters to enhance SA secretion in Y. lipolytica. PGC62-SYF-Mae strain with efficient growth and SA production was constructed by optimizing SA biosynthetic pathways and expressing the transporter SpMae1. In fed-batch fermentation, this strain produced 101.4 g/L SA with a productivity of 0.70 g/L/h and a yield of 0.37 g/g glucose, which is the highest SA titer achieved using yeast, with glucose as the sole carbon resource. Conclusion Our results indicated that transporter engineering is a powerful strategy to achieve the efficient secretion of SA in Y. lipolytica, which will promote the industrial production of bio-based SA.


Sign in / Sign up

Export Citation Format

Share Document