scholarly journals Bioenergy recovery from cattle wastewater in an UASB-AF hybrid reactor

2017 ◽  
Vol 76 (9) ◽  
pp. 2268-2279 ◽  
Author(s):  
Henrique Vieira de Mendonça ◽  
Jean Pierre Henry Balbaud Ometto ◽  
Marcelo Henrique Otenio ◽  
Alberto José Delgado dos Reis ◽  
Isabel Paula Ramos Marques

Abstract New data on biogas production and treatment of cattle wastewater were registered using an upflow anaerobic sludge blanket-anaerobic filter (UASB-AF) hybrid reactor under mesophilic temperature conditions (37 °C). The reactor was operated in semi-continuous mode with hydraulic retention times of 6, 5, 3 and 2 days and organic loading rates of 3.8, 4.6, 7.0 and 10.8 kg CODt m−3 d−1. Biogas volumes of 0.6–0.8 m3 m−3 d−1 (3.8–4.6 kg CODt m−3 d−1) and 1.2–1.4 m3 m−3 d−1 (7.0–10.8 kg CODt m−3 d−1), with methane concentrations between 69 and 75%, were attained. The removal of organic matter with values of 60–81% (CODt) and 51–75% (CODs) allowed methane yields of 0.155–0.183 m3 CH4 kg−1 CODt and 0.401–0.513 m3 CH4 kg−1 CODs to be obtained. Volatile solids were removed in 34 to 69%, with corresponding methane yields of 0.27 to 0.42 m3 CH4 kg−1 VSremoved. The good performance of the novel hybrid reactor was demonstrated by biogas outputs higher than reported previously in the literature, along with the quality of the gas obtained in the various experimental phases. The hybrid reactor investigated in this study presents comparative advantages, particularly in relation to conventional complete mixture units, considering economic factors such as energy consumption, reactor volume and installation area.

2011 ◽  
Vol 71-78 ◽  
pp. 2103-2106
Author(s):  
Ming Yue Zheng ◽  
Ming Xia Zheng ◽  
Kai Jun Wang ◽  
Hai Yan

The performance of upflow anaerobic sludge blanket (UASB) fed with three metabolic intermediate (acetate, ethanol, and propionate) respectively was studied. The degradation of metabolic intermediate were investigated to discuss the reason for propionate inhibition problem in anaerobic treatment. The hydraulic retention time (HRT) in the reactors started with 8.0h.The yield rate of biogas were 237ml/gCOD, 242ml/gCOD, 218ml/gCOD for acetate, ethanol and propionate, respectively when finishing start-up under OLR of 5.0 kgCOD/(m3·d) (HRT=9.6h).The HRT remained constant 9.6h,and the substrate concentration was gradually increased from 1,000 to 16,000mg/L as COD,and the organic loading rates(OLR) was from 3.0 to 40.0 kgCOD/(m3·d).The maximum propionate concentration was 41.6 gHPr-COD/L at the organic loading rate of 43.9 kgCOD/(m3·d) (HRT, 9.6h) as well as acetate and ethanol.


1994 ◽  
Vol 30 (4) ◽  
pp. 97-104 ◽  
Author(s):  
Herbert H. P. Fang ◽  
Tin-Sang Kwong

The study was conducted over 265 days to study the feasibility of removing starch particulates from wastewater using an 8.5 L reactor which was a hybrid between the upflow anaerobic sludge blanket (UASB) and the anaerobic filter reactors. At pH 7.2-7.5 and 37°C, the reactor was effective for the removal of chemical oxygen demand (COD) from wastewater containing starch particulates equivalent to 5000 mglL of COD with 12 hours of retention time, corresponding to a loading rate of 10 g-COD/L.d. Despite their insoluble nature, the starch particulates did not cause noticeable adverse effeels on the granulation of biomass, probably due to its easy-to-biodegrade nature and the cautious startup strategy. About 5.8% of COD in wastewater remained in the effluent, 82.5% was converted to methane, and the remaining 11.7% was converted to granular biomass with an average sludge yield of 0.09 g-VSS/g-COD. The granules exhibited a layered microstructure. The methanogenic activity of the granular biomass was 0.86 g-methane-COD/g-VSS.d in the reactor, which was considerably lower than the 1.96 g-methane-COD/ g-VSS.d measured in serum vials with an abundant supply of substrate, suggesting that further increase of loading rates was possible for the hybrid reactor.


2006 ◽  
Vol 41 (1) ◽  
pp. 56-62 ◽  
Author(s):  
J. Rajesh Banu ◽  
Sudalyandi Kaliappan ◽  
Dieter Beck

Abstract Sago, tapioca starch, is manufactured by over 800 small-scale units located in the Salem district of the State of Tamilnadu, South India. These units generate large quantities of high-strength wastewater requiring elaborate treatment prior to disposal. The present study is an attempt to treat the sago wastewater using a hybrid reactor, which combines the advantages of both fixed-film and up-flow anaerobic sludge blanket systems. A hybrid reactor with a volume of 5.9 L was operated at organic loading rates varying from 10.4 to 24.6 kg COD/m3d. After 120 d of start-up, an appreciable decrease in COD and efficient removal of solids were evident. The COD removal varied from 91 to 83%. While the removal of total solids was in the range of 56 to 63%, that of volatile solids varied from 67 to 72%. The methane production during the study period was in the range of 0.11 to 0.14 L CH4/g COD-d and the percentage was from 55 to 67%. The ideal organic loading rate (OLR) was determined on the basis of tolerance of the reactor towards higher organic loading rate and it was found to be 23.4 kg COD/m3d. The findings of the study open new possibilities for the design of low-cost and compact on-site treatment systems with very short retention periods.


2018 ◽  
Author(s):  
Gede H Cahyana

This research describes the performance of a laboratory scale anaerobic hybrid reactor (so called as Rehan) that combines an upflow anaerobic sludge blanket (UASB) in lower part and AF (anaerobic filter) filled with gravel or pebble in upper part of the reactor. It was operated at ambient temperature and high organic loading rate that varied from 8.26 to 34.05 g/l.day with average hydraulic retention time of 30 hours. The results showed that Rehan could achieve COD conversion of 50.19% to 79.34% with no sludge recirculation and 79.88% to 85.72% in mode of returned sludge. And so, a special phenomenon came up in the bottom of Rehan i.e. in suspended growth zone where the reduction of organic pollutant up to 65%. In this zone, the sludge concentration or volatile suspended solid was very high. But, when the organic loading about 40,000 mg/l COD, the performance of Rehan steeply came down, its efficiency became 50.19%. Nevertheless, in general, Rehan could treat the organic waste up to 25,000 mg/l COD.


2019 ◽  
pp. 283-291
Author(s):  
H. Mölder ◽  
V. Blonskaya

Anaerobic wastewater treatment technologies are used throughout the world for effective treatment of a wide variety of industrial wastewater, in particular for the wastewater from the food industry. This type of wastewater is rich in easily biodegradable carbohydrates and has a relatively low content in suspended solids. As an example, the anaerobic bio-degradation of organic matter in wastewater (cheese whey ) was studied on a laboratory - scale Upflow Anaerobic Sludge Blanket Reactor (UASB). This wastewater was found characterized by high COD concentration, from 58.000 to 72.000 mg/L. The digester efficiency duringthe treatment process of cheese wastewater at various organic loading rates (0.5 -16 kg COD/m3 • day ) was studied and its performance was assessed by monitoring the p value ( 6.8 -7.3 ) and biogas production ( up to 24 L /day ). The investigation has demonstrated that the process of anaerobic degradation wassufficiently effective for COD removal.


2012 ◽  
Vol 65 (2) ◽  
pp. 254-261 ◽  
Author(s):  
Rongjiu Shi ◽  
Ying Zhang ◽  
Weichao Yang ◽  
Hui Xu

The microbial community of a mesophilic lab-scale upflow anaerobic sludge blanket (UASB) reactor treating vitamin C biosynthesis wastewater at gradually elevated organic loading rates (OLRs) was characterized using 16S rDNA-based polymerase chain reaction-DGGE (denatured gradient gel electrophoresis) analysis. The DGGE fingerprints suggested that the elevated OLRs did not cause any significant changes in the microbial community. The predominant bacterial bands were affiliated with the Firmicutes (Clostridiales, four bands), Proteobacteria (Deltaproteobacteria, six bands), Bacteroidetes, and Synergistetes, respectively. All the archaeal bands were very similar to already known methanogenic species: Methanobacterium formicicum (two bands), Methanomethylovorans hollandica (one band) and Methanosaeta concilli (two bands), which belonged to the divisions Methanobacteria and Methanomicrobia, respectively.


1999 ◽  
Vol 40 (11-12) ◽  
pp. 67-75 ◽  
Author(s):  
Sigrun J. Jahren ◽  
Jukka A. Rintala ◽  
Hallvard Ødegaard

Thermomechanical pulping (TMP) whitewater was treated in thermophilic (55°C) anaerobic laboratory-scale reactors using three different reactor configurations. In all reactors up to 70% COD removals were achieved. The anaerobic hybrid reactor, composed of an upflow anaerobic sludge blanket (UASB) and a filter, gave degradation rates up to 10 kg COD/m3d at loading rates of 15 kg COD/m3d and hydraulic retention time (HRT) of 3.1 hours. The anaerobic multi-stage reactor, consisting of three compartments, each packed with granular sludge and carrier elements, gave degradation rates up to 9 kg COD/m3d at loading rates of 15-16 kg COD/m3d, and HRT down to 2.6 hours. Clogging and short circuiting eventually became a problem in the multi-stage reactor, probably caused by too high packing of the carriers. The anaerobic moving bed biofilm reactor performed similar to the other reactors at loading rates below 1.4 kg COD/m3d, which was the highest loading rate applied. The use of carriers in the anaerobic reactors allowed short HRT with good treatment efficiencies for TMP whitewater.


Sign in / Sign up

Export Citation Format

Share Document