Guiding the development of urban drainage systems by sustainability criteria

1997 ◽  
Vol 35 (9) ◽  
pp. 89-98 ◽  
Author(s):  
Peter Krebs ◽  
Tove A. Larsen

The development of urban drainage towards sustainability is discussed, primarily on the basis of case studies of mature urban drainage systems. Typical problems and a series of possible measures to enhance the systems performance are evaluated. We consider CSOs, receiving water quality, and decreasing ground water levels as actual problems. We distinguish between improvement strategies which focus on the technical system itself (e.g. storm water retention tanks, real time control) and strategies which may be described either as source control or as improving the resilience of the receiving water. Their efficiency is evaluated on the basis of short term ‘conventional’ criteria and by means of the following sustainability criteria: systems definition (time and space constants), resource efficiency and degrees of freedom. Surprisingly, the rating of the different strategies according to the two sets of criteria are quite close: In both cases, the measures which do not narrowly focus on the technical system obtain the better score.

2005 ◽  
Vol 52 (5) ◽  
pp. 257-264 ◽  
Author(s):  
T.G. Schmitt ◽  
M. Thomas ◽  
N. Ettrich

The European research project in the EUREKA framework, RisUrSim is presented with its overall objective to develop an integrated planning tool to allow cost effective management for urban drainage systems. The project consortium consisted of industrial mathematics and water engineering research institutes, municipal drainage works as well as an insurance company. The paper relates to the regulatory background of European Standard EN 752 and the need of a more detailed methodology to simulate urban flooding. The analysis of urban flooding caused by surcharged sewers in urban drainage systems leads to the necessity of a dual drainage modeling. A detailed dual drainage simulation model is described based upon hydraulic flow routing procedures for surface flow and pipe flow. Special consideration is given to the interaction between surface and sewer flow during surcharge conditions in order to most accurately compute water levels above ground as a basis for further assessments of possible damage costs. The model application is presented for a small case study in terms of data needs, model verification and first simulation results.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3432
Author(s):  
Margherita Altobelli ◽  
Sara Simona Cipolla ◽  
Marco Maglionico

The increase in waterproof surfaces, a typical phenomenon of urbanization, on the one hand, reduces the volume of rainwater that naturally infiltrates the subsoil and, on the other, it determines the increase in speeds, flow rates, and outflow volume surface; at the same time, it causes a qualitative deterioration of the water. This study researched the optimal management of urban drainage systems via the combined application of real-time control and green technologies. A hydraulic model of the sewer system of the suburbs of Bologna (Italy) was set up using the Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) to evaluate the reduction in water volume and the masses of pollutants discharged in water bodies. The combined application of these technologies allows significantly reducing both the pollutants released into the receiving water bodies and the overflow volumes, while optimizing the operation of the treatment plants. Green technologies cause an average reduction equal to 45% in volume and 53% of total suspended solids (TSS) sent to the receiver. The modeled cases represent only some of the possible configurations achievable on urban drainage systems; the combined use of different solutions could lead to further improvements in the overall functioning of the drainage system.


2013 ◽  
Vol 10 (5) ◽  
pp. 293-299 ◽  
Author(s):  
T. Beeneken ◽  
V. Erbe ◽  
A. Messmer ◽  
C. Reder ◽  
R. Rohlfing ◽  
...  

2009 ◽  
Vol 60 (7) ◽  
pp. 1919-1927 ◽  
Author(s):  
G. Vaes ◽  
T. Feyaerts ◽  
P. Swartenbroekx

Surface waters and urban drainage systems are usually studied separately. However there are important interactions between both systems. Urban drainage systems can have an important impact on the surface waters, mainly at combined sewer overflows. On the other hand during periods of high water levels in a river, the runoff from the urban drainage system can be significantly influenced by backwater, which increases the probability of flooding in is not obvious, because the modelling tools for both systems are often hard to combine properly. To properly assess the probability of flooding for this kind of integrated water systems, different submodels are needed for both subsystems. In practice often one single model is used to describe the runoff to rivers despite the presence of urban catchments. The main objective of this study is to show the limits of this simplified approach. Furthermore, it is necessary to use continuous long term simulations, because of the differences in runoff behaviour. Detailed hydrodynamic models do not really fit for this purpose because of long simulation times and high demands in memory and disk space. Therefore simplified conceptual models are more useful.


2009 ◽  
Vol 60 (5) ◽  
pp. 1233-1240 ◽  
Author(s):  
C. Jefferies ◽  
A. Duffy ◽  
N. Berwick ◽  
N. McLean ◽  
A. Hemingway

This paper outlines a rationale and scoring system for the stormwater treatment train assessment tool (STTAT) which is a proposed regulatory tool for Sustainable Urban Drainage Systems (SUDS). STTAT provides guidance and regulatory consistency for developers about the requirements of planners and the Scottish Environment Protection Agency (SEPA). The tool balances the risks of pollution to the receiving water body with the treatment provided in a treatment train. It encourages developers to take SUDS into account early, avoiding any misunderstanding of SUDS requirements at the planning stage of a development. A pessimistic view on pollution risks has been adopted since there may be a change of land use on the development in the future. A realistic view has also been taken of maintenance issues and the ‘survivability’ of a SUDS component. The development of STTAT as a response to the requirements of the Water Framework Directive is explored, the individual scores being given in tabular format for receiving water and catchment risks. Treatment scores are proposed for single SUDS components as well as multiple components within treatment trains. STTAT has been tested on a range of sites, predominantly in Scotland where both development and receiving water information was known. The operational tool in use by SEPA is presented.


Sign in / Sign up

Export Citation Format

Share Document