Validation and implementation of model based control strategies at an industrial wastewater treatment plant

2001 ◽  
Vol 44 (2-3) ◽  
pp. 145-154 ◽  
Author(s):  
D. Demey ◽  
B. Vanderhaegen ◽  
H. Vanhooren ◽  
J. Liessens ◽  
L. Van Eyck ◽  
...  

In this paper, the practical implementation and validation of advanced control strategies, designed using model based techniques, at an industrial wastewater treatment plant is demonstrated. The plant under study is treating the wastewater of a large pharmaceutical production facility. The process characteristics of the wastewater treatment were quantified by means of tracer tests, intensive measurement campaigns and the use of on-line sensors. In parallel, a dynamical model of the complete wastewater plant was developed according to the specific kinetic characteristics of the sludge and the highly varying composition of the industrial wastewater. Based on real-time data and dynamic models, control strategies for the equalisation system, the polymer dosing and phosphorus addition were established. The control strategies are being integrated in the existing SCADA system combining traditional PLC technology with robust PC based control calculations. The use of intelligent control in wastewater treatment offers a wide spectrum of possibilities to upgrade existing plants, to increase the capacity of the plant and to eliminate peaks. This can result in a more stable and secure overall performance and, finally, in cost savings. The use of on-line sensors has a potential not only for monitoring concentrations, but also for manipulating flows and concentrations. This way the performance of the plant can be secured.

2002 ◽  
Vol 46 (1-2) ◽  
pp. 29-33 ◽  
Author(s):  
A. Duine ◽  
S. Kunst

Over a period of 6 months, pilot plant investigations were carried out with the purpose of bulking sludge control with different aerobic selectors. The wastewater was dominated by industrial dischargers, containing volatile fatty acids up to 450 mg/l. With complete-mix-selectors it was not possible to achieve a stable SVI below 150 ml/g. The bulking sludge could only be controlled with a sectionalized selector (HRT 5–8 minutes per section). The SVI decreased to values below 100 ml/g. Shock-loads and increased VFA-concentrations (by dosing NaC2H3OO) did not cause filamentous growth.


1988 ◽  
Vol 20 (10) ◽  
pp. 201-210 ◽  
Author(s):  
S. Matsui ◽  
Y. Okawa ◽  
R. Ota

Twenty-eight process wastewaters and thirty-seven organic substances identified in the wastewater of the Kashima petrochemical complex were subjected to biodegradability tests. The tests consisted of the activated sludge degradability method and a supplementary test using the respiration meter method. Both tests utilized the activated sludge of the Fukashiba industrial wastewater treatment plant, which was acclimatized to the wastewater and organic substances. The 28 process wastewaters were classified into biodegradable, less biodegradable, and non-biodegradable according to the percentage TOC removal and the BOD5/TOC ratio of the wastewater. The 37 organic substances were also classified into biodegradable, less biodegradable and non-biodegradable according to TOC and CODMn removal. In general, chlorinated compounds, nitro-aromatics and polymerized compounds were difficult to biodegrade. From the biodegradability tests of the factory wastewaters, it was found that the refractory CODMn loads of these factories contributed to the load remaining in the effluent of the wastewater treatment plant. Various improvements were made to reduce the discharge of refractory substances from the factories.


Sign in / Sign up

Export Citation Format

Share Document