Model analysis of energy consumption and greenhouse gas emissions of sewage sludge treatment systems with different processes and scales

2010 ◽  
Vol 61 (2) ◽  
pp. 365-373 ◽  
Author(s):  
S. Soda ◽  
Y. Iwai ◽  
K. Sei ◽  
Y. Shimod ◽  
M. Ike

An energy consumption model was developed for evaluating sewage sludge treatment plants (SSTPs) incorporating various treatment processes such as thickening, anaerobic digestion, dewatering, incineration, and melting. Based on data analyses from SSTPs in Osaka, Japan, electricity consumption intensities for thickening, anaerobic digestion, dewatering, incineration, and melting and heat consumption intensities for anaerobic digestion, incineration, and melting were expressed as functions of sludge-loading on each unit process. The model was applied for predicting the energy consumption and greenhouse gas (GHG) emissions of SSTPs using various treatment processes and power and heat generation processes using digestion gas. Results showed that SSTPs lacking incineration and melting processes but having power generation processes showed excess energy production at the high sludge-loading rate. Energy consumption of the SSTPs without incineration and melting processes were low, but their GHG emissions were high because of CH4 and N2O emissions from sludge cake at the landfill site. Incineration and melting processes consume much energy, but have lower CH4 and N2O emissions.

2010 ◽  
Vol 1 (4) ◽  
pp. 227-233 ◽  
Author(s):  
A. Åkerman ◽  
A. Massagué ◽  
S. Mehier ◽  
E. Senante ◽  
I. Escaler ◽  
...  

Nitrous oxide (N2O) and methane (CH4) emissions from the wastewater sector represent the second largest source of greenhouse gas (GHG) emissions of the waste sector. A protocol has been developed to measure GHG from sewage sludge treatment. GHG measurements were performed on two industrial sewage sludge composting plants. Measurement campaigns showed GHG emissions range between 0.18 to 3.40 kgCH4\t dry sludge and 0.74 to 0.48 kg N2O\t dry sludge. Converted to CO2 equivalent to assess climate change impact, emission factors of CH4 range between 4.5 and 85 kg eq.CO2\t dry sludge and N2O range between 143 and 221 kg eq.CO2\t dry sludge when calculated with global warming potentials (GWP) of 25 and 298, respectively. In terms of climate change impact, N2O emissions contribute much more than CH4 because of its higher GWP. N2O is linked to the treatment of nitrogen and produced during the nitrification and denitrification biological processes. Process emissions measured on the two sites were compared with indirect emissions linked to operational energy use.


1989 ◽  
Vol 21 (8-9) ◽  
pp. 909-916
Author(s):  
A. M. Spaull ◽  
D. M. McCormack ◽  
E. B. Pike

Samples of sewage sludges, taken over a 12-month period from 9 Scottish sewage works, contained on average 0.24 cysts of Globodera spp. (potato cyst-nematodes) of which 11% were viable. The incidence was not significantly related to season or to the presence of vegetable-processing effluent. Exposure of cysts in sludge to mesophilic anaerobic digestion (35 °C, 30 min) cold anaerobic digestion (9 weeks), pasteurisation (70 °C, 30 min) and aerobic thermophilic digestion (60 °C, ld) reduced viability of eggs within the cysts by almost 100%. Sludges so treated can therefore be considered to be free from infection risk to potato crops, although the non-infective cysts may still be recovered. Treatment with lime at pH 11.5 (20 °C, 24 h), by aerobic stabilisation in an oxidation ditch (7 weeks) and by activated-sludge treatment (5d) did not reduced viability acceptably. Accelerated cold digestion did not reduce viability sufficiently after the usual 15 weeks but rendered eggs completely non-viable after 21 weeks. The results show that even sludge treated to destroy viable cysts should not be applied to land used for growing seed potatoes and subject to testing for freedom from infestation. Treatment destroying viability should increase the acceptability of sludge for ware potato growers, although the numbers of cysts applied in untreated sludge would be unlikely to increase significantly levels of cysts in soils already infested.


2017 ◽  
Vol 143 ◽  
pp. 1123-1136 ◽  
Author(s):  
Claire Gourdet ◽  
Romain Girault ◽  
Sarah Berthault ◽  
Marion Richard ◽  
Julian Tosoni ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (59) ◽  
pp. 35718-35728
Author(s):  
Reza Barati rashvanlou ◽  
Abbas Rezaee ◽  
Mahdi Farzadkia ◽  
Mitra Gholami ◽  
Majid Kermani

Micro-aeration as a pretreatment method improves the efficiency of anaerobic digestion of municipal sewage sludge and consequently promotes the methane production.


2006 ◽  
Vol 53 (11) ◽  
pp. 221-226 ◽  
Author(s):  
M. Minamiyama ◽  
S. Ochi ◽  
Y. Suzuki

Many environmental problems caused by endocrine disruptors (EDs) have been reported. It is reported that EDs flow into sewage treatment plants, and it has been pointed out that these may be shifted from the wastewater treatment process to the sludge treatment process. Little is known about the fate of EDs accumulated in sewage sludge, so we carried out a study to clarify the fate of EDs in sewage sludge treatment processes, especially in an anaerobic digestion process. In this study, nonylphenol (NP) was selected as a target ED. Nonylphenol ethoxylates (NPnEO) or nonylphenoxy acetic acids (NPnEC), which were the precursor of NP, were added to an anaerobic digestion process, and mass balance was investigated. The following results were obtained from the anaerobic digestion experiments. (1) NP1EO was injected to an anaerobic digestion testing apparatus that was operated at a retention time of approximately 28 d and a temperature of 35 °C with thickened sludge sampled from an actual wastewater treatment plant. Approximately 40% of the injected NP1EO was converted to NP. (2) NP1EC was injected to an anaerobic digestion testing apparatus with thickened sludge. As a result, almost all injected NP1EC was converted to NP. When NP2EC was injected, NP2EC was not converted to NP until the 20th day.


Sign in / Sign up

Export Citation Format

Share Document