scholarly journals Experimental study on treating agate dyeing wastewater with sulfate-reducing bacteria strengthening peanut shells and scrap iron

2017 ◽  
Vol 76 (4) ◽  
pp. 939-952
Author(s):  
Junzhen Di ◽  
Mingxin Wang

To solve the problems of high concentrations of Cr6+, SO42- and H+ in agate dyeing industrial wastewater and heavy pollution and high treating cost, single-factor and orthogonal experiments were conducted to determine the optimum particle size, the ratio of adsorbents dosing and hydraulic retention time based on peanut shells and scrap iron. Experiments, using five dynamic columns filled with the peanut shells, scrap iron and sulfate-reducing bacteria (SRB), were also conducted to determine the effect and mechanism of treating the wastewater. The results show that the best treatment effect was obtained when the diameter of peanut shells was 3 mesh, scrap iron being 60 mesh size, scrap iron and peanut shells with a ratio of 1:2, and hydraulic retention time being 24 h. By the comprehensive comparison of five groups of columns, the treating effect of column 4 was best, in which the removal rate of SO42- and Cr6+ was 30.17% and 88.36% respectively before adding the microorganisms, and 25.34% and 99.31% respectively after adding the microorganisms. The average of chemical oxygen demand (COD) release quantity was 62.11 and 513.75 mg·L−1, and the average effluent pH was 7.09 and 7.93 before and after addition of microorganisms respectively. In conclusion, peanut shells, scrap iron and SRB had a certain synergistic effect on treating agate dyeing wastewater.

2012 ◽  
Vol 170-173 ◽  
pp. 2344-2347
Author(s):  
Yan Li Jiang ◽  
Ai Hua Li ◽  
Jun Zhen Di ◽  
Xiao Li Niu ◽  
Jian Zheng ◽  
...  

By experiments, separate and purify efficient sulfate—reducing bacteria (SRB), which is identified as Desulfobacter. With its treatment of acid mine drainage(AMD) containing Fe2+ and Mn2+, obtain the optimum conditions that pH=6,temperature=37,vibrating intensity=100r/min, COD/SO42- =2.Under this condition ,the removal rate of SO42-、Fe2+ and Mn2+ is 88.16%、99.37% and 59.18% respectively with the initial concentration 1411mg/L for SO42-,257mg/L for Fe2+ and 325mg/L for Mn2+.This puts a theoretical foundation for the further study.


2021 ◽  
Vol 9 (11) ◽  
pp. 2015-2032
Author(s):  
Xuying Guo ◽  
Guoliang Jiang ◽  
Saiou Fu ◽  
Zhiyong Hu ◽  
Junzhen Di ◽  
...  

2020 ◽  
Vol 82 (5) ◽  
pp. 11-20
Author(s):  
D.R. Abdulina ◽  
◽  
L.M. Purish ◽  
G.O. Iutynska ◽  
◽  
...  

The studies of the carbohydrate composition of the sulfate-reducing bacteria (SRB) biofilms formed on the steel surface, which are a factor of microbial corrosion, are significant. Since exopolymers synthesized by bacteria could activate corrosive processes. The aim of the study was to investigate the specificity of commercial lectins, labeled with colloidal gold to carbohydrates in the biofilm exopolymeric matrix produced by the corrosive-relevant SRB strains from man-caused ecotopes. Methods. Microbiological methods (obtaining of the SRB biofilms during cultivation in liquid Postgate B media under microaerophilic conditions), biochemical methods (lectin-binding analysis of 10 commercial lectins, labeled with colloidal gold), transmission electron microscopy using JEM-1400 JEOL. Results. It was shown using transmission electron microscopy that the binding of lectins with carbohydrates in the biofilm of the studied SRB strains occurred directly in the exopolymerіс matrix, as well as on the surfaces of bacterial cells, as seen by the presence of colloidal gold particles. For detection of the neutral carbohydrates (D-glucose and D-mannose) in the biofilm of almost all studied bacterial strains PSA lectin was the most specific. This lectin binding in biofilms of Desulfotomaculum sp. К1/3 and Desulfovibrio sp. 10 strains was higher in 90.8% and 94.4%, respectively, then for ConA lectin. The presence of fucose in the SRB biofilms was detected using LABA lectin, that showed specificity to the biofilm EPS of all the studied strains. LBA lectin was the most specific to N-аcetyl-D-galactosamine for determination of amino sugars in the biofilm. The amount of this lectin binding in D. vulgaris DSM644 biofilm was 30.3, 10.1 and 9.3 times higher than SBA, SNA and PNA lectins, respectively. STA, LVA and WGA lectins were used to detect the N-acetyl-Dglucosamine and sialic acid in the biofilm. WGA lectin showed specificity to N-acetyl-D-glucosamine in the biofilm of all the studied SRB; maximum number of bounded colloidal gold particles (175 particles/μm2) was found in the Desulfotomaculum sp. TC3 biofilm. STA lectin was interacted most actively with N-acetyl-D-glucosamine in Desulfotomaculum sp. TC3 and Desulfomicrobium sp. TC4 biofilms. The number of bounded colloidal gold particles was in 9.2 and 7.4 times higher, respectively, than using LVA lectin. The lowest binding of colloidal gold particles was observed for LVA lectin. Conclusions. It was identified the individual specificity of the 10 commercial lectins to the carbohydrates of biofilm matrix on the steel surface, produced by SRB. It was estimated that lectins with identical carbohydrates specificity had variation in binding to the biofilm carbohydrates of different SRB strains. Establishing of the lectin range selected for each culture lead to the reduction of the scope of studies and labor time in the researching of the peculiarities of exopolymeric matrix composition of biofilms formed by corrosiverelevant SRB.


2017 ◽  
Vol 28 (1-2) ◽  
pp. 84-95
Author(s):  
O. M. Moroz ◽  
S. O. Hnatush ◽  
Ch. I. Bohoslavets ◽  
T. M. Hrytsun’ ◽  
B. M. Borsukevych

Sulfate reducing bacteria, capable to reductive transformation of different nature pollutants, used in biotechnologies of purification of sewage, contaminated by carbon, sulfur, nitrogen and metal compounds. H2S formed by them sediment metals to form of insoluble sulfides. Number of metals can be used by these microorganisms as electron acceptors during anaerobic respiration. Because under the influence of metal compounds observed slowing of bacteria metabolism, selection isolated from technologically modified ecotops resistant to pollutions strains is important task to create a new biotechnologies of purification. That’s why the purpose of this work was to study the influence of potassium dichromate, present in medium, on reduction of sulfate and nitrate ions by sulfate reducing bacteria Desulfovibrio desulfuricans IMV K-6, Desulfovibrio sp. Yav-6 and Desulfovibrio sp. Yav-8, isolated from Yavorivske Lake, to estimate the efficiency of possible usage of these bacteria in technologies of complex purification of environment from dangerous pollutants. Bacteria were cultivated in modified Kravtsov-Sorokin medium without SO42- and FeCl2×4H2O for 10 days. To study the influence of K2Cr2O7 on usage by bacteria SO42- or NO3- cells were seeded to media with Na2SO4×10H2O or NaNO3 and K2Cr2O7 at concentrations of 1.74 mM for total content of electron acceptors in medium 3.47 mM (concentration of SO42- in medium of standard composition). Cells were also seeded to media with 3.47 mM Na2SO4×10H2O, NaNO3 or K2Cr2O7 to investigate their growth in media with SO42-, NO3- or Cr2O72- as sole electron acceptor (control). Biomass was determined by turbidymetric method, content of sulfate, nitrate, dichromate, chromium (III) ions, hydrogen sulfide or ammonia ions in cultural liquid – by spectrophotometric method. It was found that K2Cr2O7 inhibits growth (2.2 and 1.3 times) and level of reduction by bacteria sulfate or nitrate ions (4.2 and 3.0 times, respectively) at simultaneous addition into cultivation medium of 1.74 mM SO42- or NO3- and 1.74 mM Cr2O72-, compared with growth and level of reduction of sulfate or nitrate ions in medium only with SO42- or NO3- as sole electron acceptor. Revealed that during cultivation of bacteria in presence of equimolar amount of SO42- or NO3- and Cr2O72-, last used by bacteria faster, content of Cr3+ during whole period of bacteria cultivation exceeded content H2S or NH4+. K2Cr2O7 in medium has most negative influence on dissimilatory reduction by bacteria SO42- than NO3-, since level of nitrate ions reduction by cells in medium with NO3- and Cr2O72- was a half times higher than level of sulfate ions reduction by it in medium with SO42- and Cr2O72-. The ability of bacteria Desulfovibrio sp. to priority reduction of Cr2O72- and after their exhaustion − NO3- and SO42- in the processes of anaerobic respiration can be used in technologies of complex purification of environment from toxic compounds.


2016 ◽  
Vol 14 (3) ◽  
pp. 557-561
Author(s):  
Nguyễn Thị Yên ◽  
Kiều Thị Quỳnh Hoa

Lead contaminated wastewater negatively impacts to living organisms as well as humans. In recent years, a highly promising biological process using the anaerobic production of sulfide ions by sulfate-reducing bacteria has presented itself as an alternative option for the removal of lead. This process is based on microbial utilization of electron donors, such as organic compounds (carbon sources), and sulfate as the terminal electron acceptor for sulfide production. The biogenic hydrogen sulfide reacts with dissolved heavy metals to form insoluble metal sulfide precipitates Removal of lead by an enriched consortium of sulfate-reducing bacteria (DM10) was evaluated sulfate reduction, sulfide production and lead precipitation. Four parallel anaerobic continuous stirred tank reactors (CSTR, V = 2L) (referred as R1 - R4) were fed with synthetic wastewater containing Pb2+ in the concentrations of 0, 100, 150 and 200 mg L-1 of lead and operated with a hydraulic retention time of 5 days for 40 days. The loading rates of each metal in R1- R4 were 0, 20, 30 and 40 mg L-1 d-1, respectively. The results showed that there was no inhibition of SRB growth and that lead removal efficiencies of 99-100% for Pb2+ were achieved in R2 (100 mg L-1) and R3 (150 mg L-1) throughout the experiment. For the highest lead concentration of  200 mg L-1, a decrease in efficiency of removal (from 100 to 96%) was observed at the end of the experiment. The obtained result of this study might help for a better control operation and performance improvements of reactors.


Sign in / Sign up

Export Citation Format

Share Document