scholarly journals A VFA-based controller for anaerobic digestion of industrial winery wastewater

2018 ◽  
Vol 78 (9) ◽  
pp. 1871-1878 ◽  
Author(s):  
Gustavo Vargas-Morales ◽  
Rolando Chamy ◽  
Santiago García-Gen

Abstract A variable-gain controller for anaerobic digestion of industrial winery wastewater is presented. A control law using both volatile fatty acids (VFA) and methane production rate as controlled variables and organic loading rate (OLR) as manipulated variable is defined. The process state is quantitatively estimated by an empirical function comparing VFA measurements against a setpoint value; then, it is modified with a second empirical function that compares the methane flow rate with a maximum capacity reference, and finally it is adjusted with a third factor considering the actual hydraulic retention time. The variable-gain function determines the extent of the OLR change applied to the system. The controller was successfully validated in a 95 L upflow-anaerobic-sludge-blanket (UASB) reactor, treating industrial wine wastewater at OLR ranged between 2.0 and 39.2 g COD/L d for 120 days at mesophilic conditions. Higher performance was achieved contrasted with a conventional strategy carried out in a parallel UASB unit.

1996 ◽  
Vol 34 (5-6) ◽  
pp. 509-515 ◽  
Author(s):  
Huub J. Gijzen ◽  
Frank Kansiime

The start-up and performance of an Upflow Anaerobic Sludge Blanket (UASB) reactor and a Polyurethane Carrier Reactor (PCR) was investigated under similar operational conditions. The presence of polyurethane cubes as a carrier material in the PCR resulted in fast reactor start-up due to quick immobilization of methanogenic associations. Start-up of the UASB was slower compared to the PCR, which was mainly reflected in a lower biogas production and acetate degradation efficiency. However, when enough biomass had accumulated in the UASB reactor after 15 weeks of operation, the performance of the two reactors was almost the same in terms of biogas production and volatile fatty acids degradation. Efficient VFA degradation (about 90%) and biogas production (5.2 l/l.d) were achieved at an organic loading rate of 13.2 g/l.d) and HRT of 6 h. When hydraulic retention time was subsequently reduced from 6 to 2 h, the performance of the UASB reactor was better than that of the PCR. The inferior performance of the PCR may have been attributed to channelling of the influent in the reactor at high liquid flow rate.


2012 ◽  
Vol 9 ◽  
pp. 57-62
Author(s):  
Fiza Sarwar ◽  
Wajeeha Malik ◽  
Muhammad Salman Ahmed ◽  
Harja Shahid

Abstract: This study was designed using actual effluent from the sugary mills in an Up-flow Anaerobic Sludge Blanket (UASB) Reactor to evaluate treatability performance. The reactor was started-up in step-wise loading rates beginning from 0.05kg carbon oxygen demand (COD)/m3-day to 3.50kg-COD/m3-day. The hydraulic retention time (HRT) was slowly decreased from 96 hrs to eight hrs. It was observed that the removal efficiency of COD of more than 73% can be easily achieved at an HRT of more than 16 hours corresponding to an average organic loading rate (OLR) of 3.0kg-COD/m3-day, at neutral pH and constant temperature of 29°C. The average VFAs (volatile fatty acids) and biogas production was observed as 560mg/L and 1.6L/g-CODrem-d, respectively. The average methane composition was estimated as 62%. The results of this study suggest that the treatment of sugar mills effluent with the anaerobic technology seems to be more reliable, effective and economical.DOI: http://dx.doi.org/10.3126/hn.v9i0.7075 Hydro Nepal Vol.9 July 2011 57-62


2012 ◽  
Vol 65 (10) ◽  
pp. 1887-1894 ◽  
Author(s):  
V. Singh ◽  
A. K. Mittal

This study reports applicability of upflow anaerobic sludge blanket (UASB) process to treat the leachate from a municipal landfill located in Delhi. A laboratory scale reactor was operated at an organic loading rate of 3.00 kg chemical oxygen demand (COD)/m3 d corresponding to a hydraulic retention time (HRT) of 12 h for over 8 months. The effect of toxicity of leachate, and feed composition on the treatability of leachate was evaluated. Average COD of the leachate, during the study period varied between 8,880 and 66,420 mg/l. Toxicity of the leachate used during a period of 8 months varied from LC50 1.22 to 12.35 for 96 h. The removal efficiency of soluble COD ranged between 91 and 67% for fresh leachate and decreased drastically from 90 to 35% for old leachate having high toxicity. The efficiency varied from 81 to 65%. The reactor performed more efficiently for the treatment of fresh leachate (less toxic, LC50 11.64, 12.35, and 12.15 for 96 h) as compared with old leachate (more toxic, LC50 1.22 for 96 h). Toxicity of the leachate affected its treatment potential by the UASB.


2011 ◽  
Vol 63 (5) ◽  
pp. 877-884 ◽  
Author(s):  
P. Mijalova Nacheva ◽  
M. Reyes Pantoja ◽  
E. A. Lomelí Serrano

The performance of an upflow anaerobic sludge blanket (UASB) reactor operated at ambient temperature (20.9–25.2°C) was analysed for the treatment of slaughterhouse wastewater previously pre-treated for solid separation. The experimental work was carried out in a reactor with 15 L effective volume. Four organic loads were applied and the process performance was evaluated. The COD removal rate increased with the load rise from 4 to 15 kg COD.m−3.d−1. Removal efficiencies of 90% were obtained with a load of 15 kg COD.m−3.d−1. The entrapment of suspended solids in the sludge blanket was greater in proportion during the first two stages due to the low upflow velocities used when loads of 4 and 7 kg COD.m−3.d−1 were evaluated. This phenomenon did not affect the structure of the biological grains or their methanogenic activity. More than 50% of the organic nitrogen was degraded, causing a 3% increase of ammonia concentration. The concentrations of the volatile fatty acids were not high and the wastewater alkalinity was enough to prevent acidification. The yield coefficient of methane production increased with the load rise, reaching 0.266 m3/kg CODremoved at 15 kg COD.m−3.d−1 organic load. The UASB reactor is a good option for the biological treatment of pre-treated slaughterhouse wastewater. However, additional treatment is required in order to accomplish the water quality requirements in discharges to water bodies.


1990 ◽  
Vol 22 (9) ◽  
pp. 167-174 ◽  
Author(s):  
S. S. Cheng ◽  
J. J. Lay ◽  
Y. T. Wei ◽  
M. H. Wu ◽  
G. D. Roam ◽  
...  

During the last two years,twenty-seven bioreactors of upflow anaerobic sludge blanket(UASB) process were constructed and operated well to treat 3,300 m3/day of winery wastewater in six winery plants in Taiwan. Each UASB reactor was installed with an internal filter and a side-armed sludge settler to separate gas-liquid-solid effectively in 127 m3 of reactor volume.These six plants established good performance of UASB process with different organic loadings depending on different characteristics of the winery wastewater. Start-up performance of the modified UASB process in four winery plants was investigated.Bioactivity of anaerobic sludge in each UASB was evaluated by means of Biochemical Methane Potential (BMP)test. Biokinetics of Monod and Haldane models were employed to interpret the different sludge characteristics in terms of gas production rate. Scanning electronic microscopy also showed different morphology of sludge granules in three UASB systems.


2019 ◽  
Vol 80 (8) ◽  
pp. 1505-1511 ◽  
Author(s):  
Nathalie Dyane Miranda Slompo ◽  
Larissa Quartaroli ◽  
Grietje Zeeman ◽  
Gustavo Henrique Ribeiro da Silva ◽  
Luiz Antonio Daniel

Abstract Decentralized sanitary wastewater treatment has become a viable and sustainable alternative, especially for developing countries and small communities. Besides, effluents may present variations in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total nitrogen values. This study describes the feasibility of using a pilot upflow anaerobic sludge blanket (UASB) reactor to treat wastewater with different organic loads (COD), using black water (BW) and sanitary wastewater, in addition to its potential for preserving nutrients for later recovery and/or reuse. The UASB reactor was operated continuously for 95 weeks, with a hydraulic retention time of 3 days. In Phase 1, the reactor treated simulated BW and achieved 77% CODtotal removal. In Phase 2, treating only sanitary wastewater, the CODtotal removal efficiency was 60%. Phase 3 treated simulated BW again, and CODtotal removal efficiency was somewhat higher than in Phase 1, reaching 81%. In Phase 3, the removal of pathogens was also evaluated: the efficiency was 1.96 log for Escherichia coli and 2.13 log for total coliforms. The UASB reactor was able to withstand large variations in the organic loading rate (0.09–1.49 kg COD m−3 d−1), in continuous operation mode, maintaining a stable organic matter removal.


1999 ◽  
Vol 40 (8) ◽  
pp. 57-62 ◽  
Author(s):  
A. Pun˜al ◽  
J. M. Lema

The start-up and optimisation of a 380 m3 UASB reactor (Up-flow Anaerobic Sludge Blanket) treating wastewater from a fish-canning factory was carried out. At the beginning of the operation the Organic Loading Rate (OLR) was 1 kg COD/m3·d. Then, the load was gradually increased in steps of 50% OLR until the final capacity of the system (4 kg COD/m3·d) was achieved. Wastewater characteristics were highly dependent on the canned product (mussel, tuna, sardines, etc.). In spite of that, a stable operation working at a hydraulic retention time (HRT) of 2 days was maintained. Total Alkalinity (TA) always presented values higher than 3 g CaCO3/l, while the IA/TA ratio (Intermediate Alalinity/Total Alkalinity) was always maintained lower than 0.3. In order to improve granulation conditions, upward velocities from 0.5 to 0.8 m/h were applied. The highest values caused the washout of non-granulated biomass from the reactor, optimum operation being achieved at an upward velocity of 0.7 m/h.


2021 ◽  
Vol 47 (1) ◽  
pp. 174-180
Author(s):  
Henrique Sousa do Nascimento ◽  
Geísa Vieira Vasconcelos Magalhães ◽  
José Demontier Vieira de Souza-Filho ◽  
Ronaldo Stefanutti ◽  
Ari Clecius Alves de Lima ◽  
...  

This study evaluated the use of two anaerobic bioreactors in the production of biogas from malt bagasse waste. Bioreactor B1 was loaded with a mixture of 600mL of anaerobic sludge, 300g of organic waste, taken from an upflow anaerobic sludge blanket (UASB) reactor, and 300g of malt bagasse residue. Bioreactor B2 was loaded with a mixture of 600g of organic waste and 600mL of anaerobic sludge taken from an UASB reactor. The anaerobic digestion processes lasted for 10 weeks and the produced methane fraction was measured in 5 occasions. Bioreactor B1 presented low methane production (7.2%) but Bioreactor B2 showed a much more signif- icant percentage, reaching up to 48.3%. The experiments were capable of reproducing largescale operational conditions, enabling increased results in biogas capturing and processing, strengthening sustainability and energy efficiency. The experiment also showed the importance of studying different types of organic waste, seeking optimization of anaerobic digestion pro- cesses.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
M. K. Daud ◽  
Hina Rizvi ◽  
Muhammad Farhan Akram ◽  
Shafaqat Ali ◽  
Muhammad Rizwan ◽  
...  

The upflow anaerobic sludge blanket (UASB) reactor has been recognized as an important wastewater treatment technology among anaerobic treatment methods. The objective of this study was to perform literature review on the treatment of domestic sewage using the UASB reactor as the core component and identifying future areas of research. The merits of anaerobic and aerobic bioreactors are highlighted and other sewage treatment technologies are compared with UASB on the basis of performance, resource recovery potential, and cost. The comparison supports UASB as a suitable option on the basis of performance, green energy generation, minimal space requirement, and low capital, operation, and maintenance costs. The main process parameters such as temperature, hydraulic retention time (HRT), organic loading rate (OLR), pH, granulation, and mixing and their effects on the performance of UASB reactor and hydrogen production are presented for achieving optimal results. Feasible posttreatment steps are also identified for effective discharge and/or reuse of treated water.


Sign in / Sign up

Export Citation Format

Share Document