scholarly journals ON LIE ALGEBRAS OF INFINITESIMAL AFFINE TRANSFORMATIONS IN TANGENT BUNDLES WITH A COMPLETE LIFT CONNECTION

Author(s):  
G. A. Sultanova ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jonas Deré ◽  
Marcos Origlia

Abstract Every simply connected and connected solvable Lie group 𝐺 admits a simply transitive action on a nilpotent Lie group 𝐻 via affine transformations. Although the existence is guaranteed, not much is known about which Lie groups 𝐺 can act simply transitively on which Lie groups 𝐻. So far, the focus was mainly on the case where 𝐺 is also nilpotent, leading to a characterization depending only on the corresponding Lie algebras and related to the notion of post-Lie algebra structures. This paper studies two different aspects of this problem. First, we give a method to check whether a given action ρ : G → Aff ⁡ ( H ) \rho\colon G\to\operatorname{Aff}(H) is simply transitive by looking only at the induced morphism φ : g → aff ⁡ ( h ) \varphi\colon\mathfrak{g}\to\operatorname{aff}(\mathfrak{h}) between the corresponding Lie algebras. Secondly, we show how to check whether a given solvable Lie group 𝐺 acts simply transitively on a given nilpotent Lie group 𝐻, again by studying properties of the corresponding Lie algebras. The main tool for both methods is the semisimple splitting of a solvable Lie algebra and its relation to the algebraic hull, which we also define on the level of Lie algebras. As an application, we give a full description of the possibilities for simply transitive actions up to dimension 4.


Author(s):  
Geeta Verma

The present paper aims to study the complete lift of golden structure on tangent bundles. Integrability conditions for complete lift and third-order tangent bundle are established.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter presents some results about groups generated by reflections and the standard metric on a Bruhat-Tits building. It begins with definitions relating to an affine subspace, an affine hyperplane, an affine span, an affine map, and an affine transformation. It then considers a notation stating that the convex closure of a subset a of X is the intersection of all convex sets containing a and another notation that denotes by AGL(X) the group of all affine transformations of X and by Trans(X) the set of all translations of X. It also describes Euclidean spaces and assumes that the real vector space X is of finite dimension n and that d is a Euclidean metric on X. Finally, it discusses Euclidean representations and the standard metric.


2018 ◽  
Vol 2018 (2) ◽  
pp. 43-49
Author(s):  
R.K. Gaybullaev ◽  
Kh.A. Khalkulova ◽  
J.Q. Adashev

Sign in / Sign up

Export Citation Format

Share Document