EVALUATION OF METHODS AUTOMATING MEDICAL IMAGE ACQUISITION IN THE CONDITIONS OF EXTENDED ISOLATION

2018 ◽  
Vol 52 (4) ◽  
pp. 50-54
Author(s):  
I.I. Popova ◽  
◽  
O.I. Orlov ◽  
Yu.G. Revyakin ◽  
V.E. Bogoslavsky ◽  
...  
Author(s):  
Vinayak Majhi ◽  
Sudip Paul

Content-based image retrieval is a promising technique to access visual data. With the huge development of computer storage, networking, and the transmission technology now it becomes possible to retrieve the image data beside the text. In the traditional way, we find the content of image by the tagged image with some indexed text. With the development of machine learning technique in the domain of artificial intelligence, the feature extraction techniques become easier for CBIR. The medical images are continuously increasing day by day where each image holds some specific and unique information about some specific disease. The objectives of using CBIR in medical diagnosis are to provide correct and effective information to the specialist for the quality and efficient diagnosis of the disease. Medical image content requires different types of CBIR technique for different medical image acquisition techniques such as MRI, CT, PET Scan, USG, MRS, etc. So, in this concern, each CBIR technique has its unique feature extraction algorithm for each acquisition technique.


2021 ◽  
pp. 1-1
Author(s):  
Juan A. Lenero-Bardallo ◽  
Rafael De la Rosa-Vidal ◽  
Ruben Padial-Allue ◽  
Joaquin Ceballos-Caceres ◽  
Angel Rodriguez-Vazquez ◽  
...  

Author(s):  
Brian Cross

A relatively new entry, in the field of microscopy, is the Scanning X-Ray Fluorescence Microscope (SXRFM). Using this type of instrument (e.g. Kevex Omicron X-ray Microprobe), one can obtain multiple elemental x-ray images, from the analysis of materials which show heterogeneity. The SXRFM obtains images by collimating an x-ray beam (e.g. 100 μm diameter), and then scanning the sample with a high-speed x-y stage. To speed up the image acquisition, data is acquired "on-the-fly" by slew-scanning the stage along the x-axis, like a TV or SEM scan. To reduce the overhead from "fly-back," the images can be acquired by bi-directional scanning of the x-axis. This results in very little overhead with the re-positioning of the sample stage. The image acquisition rate is dominated by the x-ray acquisition rate. Therefore, the total x-ray image acquisition rate, using the SXRFM, is very comparable to an SEM. Although the x-ray spatial resolution of the SXRFM is worse than an SEM (say 100 vs. 2 μm), there are several other advantages.


Author(s):  
James F. Mancuso

IBM PC compatible computers are widely used in microscopy for applications ranging from control to image acquisition and analysis. The choice of IBM-PC based systems over competing computer platforms can be based on technical merit alone or on a number of factors relating to economics, availability of peripherals, management dictum, or simple personal preference.IBM-PC got a strong “head start” by first dominating clerical, document processing and financial applications. The use of these computers spilled into the laboratory where the DOS based IBM-PC replaced mini-computers. Compared to minicomputer, the PC provided a more for cost-effective platform for applications in numerical analysis, engineering and design, instrument control, image acquisition and image processing. In addition, the sitewide use of a common PC platform could reduce the cost of training and support services relative to cases where many different computer platforms were used. This could be especially true for the microscopists who must use computers in both the laboratory and the office.


Sign in / Sign up

Export Citation Format

Share Document