scholarly journals Three-dimensional gyrokinetic particle-in-cell simulation of plasmas on a massively parallel computer: Final report on LDRD Core Competency Project, FY 1991--FY 1993

1994 ◽  
Author(s):  
J.A. Byers ◽  
T.J. Williams ◽  
B.I. Cohen ◽  
A.M. Dimits
2016 ◽  
Vol 19 (1) ◽  
pp. 205-225 ◽  
Author(s):  
Jean-Noel G. Leboeuf ◽  
Viktor K. Decyk ◽  
David E. Newman ◽  
Raul Sanchez

AbstractThe massively parallel, nonlinear, three-dimensional (3D), toroidal, electrostatic, gyrokinetic, particle-in-cell (PIC), Cartesian geometry UCAN code, with particle ions and adiabatic electrons, has been successfully exercised to identify non-diffusive transport characteristics in present day tokamak discharges. The limitation in applying UCAN to larger scale discharges is the 1D domain decomposition in the toroidal (or z-) direction for massively parallel implementation using MPI which has restricted the calculations to a few hundred ion Larmor radii or gyroradii per plasma minor radius. To exceed these sizes, we have implemented 2D domain decomposition in UCAN with the addition of the y-direction to the processor mix. This has been facilitated by use of relevant components in the P2LIB library of field and particle management routines developed for UCLA's UPIC Framework of conventional PIC codes. The gyro-averaging specific to gyrokinetic codes is simplified by the use of replicated arrays for efficient charge accumulation and force deposition. The 2D domain-decomposed UCAN2 code reproduces the original 1D domain nonlinear results within round-off. Benchmarks of UCAN2 on the Cray XC30 Edison at NERSC demonstrate ideal scaling when problem size is increased along with processor number up to the largest power of 2 available, namely 131,072 processors. These particle weak scaling benchmarks also indicate that the 1 nanosecond per particle per time step and 1 TFlops barriers are easily broken by UCAN2 with 1 billion particles or more and 2000 or more processors.


1999 ◽  
Vol 6 (2) ◽  
pp. 603-613 ◽  
Author(s):  
R. W. Lemke ◽  
T. C. Genoni ◽  
T. A. Spencer

2014 ◽  
Vol 30 (1) ◽  
pp. 186-196 ◽  
Author(s):  
Yasumasa Ashida ◽  
Hiroshi Yamakawa ◽  
Ikkoh Funaki ◽  
Hideyuki Usui ◽  
Yoshihiro Kajimura ◽  
...  

2010 ◽  
Vol 22 (3) ◽  
pp. 613-617
Author(s):  
张泽海 Zhang Zehai ◽  
舒挺 Shu Ting ◽  
张军 Zhang Jun ◽  
刘静 Liu Jing ◽  
白现臣 Bai Xianchen

1994 ◽  
Vol 12 (2) ◽  
pp. 273-282 ◽  
Author(s):  
Glenn Joyce ◽  
Jonathan Krall ◽  
Steven Slinker

ELBA is a three-dimensional, particle-in-cell, simulation code that has been developed to study the propagation and transport of relativistic charged particle beams. The code is particularly suited to the simulation of relativistic electron beams propagating through collisionless or slightly collisional plasmas or through external electric or magnetic fields. Particle motion is followed via a coordinate “window” in the laboratory frame that moves at the speed of light. This scheme allows us to model only the immediate vicinity of the beam. Because no information can move in the forward direction in these coordinates, particle and field data can be handled in a simple way that allows for very large scale simulations. A mapping scheme has been implemented that, with corrections to Maxwell's equations, allows the inclusion of bends in the simulation system.


2007 ◽  
Vol 15 (2) ◽  
pp. 83-94 ◽  
Author(s):  
Joseph Wang ◽  
Yong Cao ◽  
Raed Kafafy ◽  
Viktor Decyk

A parallel, three-dimensional electrostatic PIC code is developed for large-scale electric propulsion simulations using parallel supercomputers. This code uses a newly developed immersed-finite-element particle-in-cell (IFE-PIC) algorithm designed to handle complex boundary conditions accurately while maintaining the computational speed of the standard PIC code. Domain decomposition is used in both field solve and particle push to divide the computation among processors. Two simulations studies are presented to demonstrate the capability of the code. The first is a full particle simulation of near-thruster plume using real ion to electron mass ratio. The second is a high-resolution simulation of multiple ion thruster plume interactions for a realistic spacecraft using a domain enclosing the entire solar array panel. Performance benchmarks show that the IFE-PIC achieves a high parallel efficiency of ≥ 90%


Sign in / Sign up

Export Citation Format

Share Document