scholarly journals Machine Learning for Memory Reduction in the Implicit Monte Carlo Simulations of Thermal Radiative Transfer

2020 ◽  
Author(s):  
Anna M. Matsekh ◽  
Luis Chacon ◽  
HyeongKae Park ◽  
Guangye Chen
2013 ◽  
Author(s):  
S. Stamnes ◽  
D. Cohen ◽  
T. Tanikawa ◽  
E. R. Sommersten ◽  
J. K. Lotsberg ◽  
...  

2014 ◽  
Vol 43 (1-7) ◽  
pp. 314-335 ◽  
Author(s):  
H. Park ◽  
D. A. Knoll ◽  
R. M. Rauenzahn ◽  
A. B. Wollaber ◽  
R. B. Lowrie

2021 ◽  
Author(s):  
Kelly Thompson ◽  
Mathew Cleveland ◽  
Alex Long ◽  
Kendra Long ◽  
Ryan Wollaeger ◽  
...  

2007 ◽  
Vol 669 (2) ◽  
pp. 1262-1278 ◽  
Author(s):  
Ya. Pavlyuchenkov ◽  
D. Semenov ◽  
Th. Henning ◽  
St. Guilloteau ◽  
V. Pietu ◽  
...  

2020 ◽  
Author(s):  
Antti Pihlajamaki ◽  
Joonas Hamalainen ◽  
Joakim Linja ◽  
Paavo Nieminen ◽  
Sami Malola ◽  
...  

<div> <div> <div> <p>We present an implementation of distance-based machine learning (ML) methods to create a realistic atomistic interaction potential to be used in Monte Carlo simulations of thermal dynamics of thiolate (SR) protected gold nanoclusters. The ML potential is trained for Au38(SR)24 by using previously published, density functional theory (DFT) -based, molecular dynamics (MD) simulation data on two experimentally characterized structural isomers of the cluster, and validated against independent DFT MD simulations. This method opens a door to efficient probing of the configuration space for further investigations of thermal-dependent electronic and optical properties of Au38(SR)24. Our ML implementation strategy allows for generalization and accuracy control of distance-based ML models for complex nanostructures having several chemical elements and interactions of varying strength. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document