scholarly journals THE ARC SYSTEM ONE-DIMENSIONAL DIFFUSION THEORY CAPABILITY, DARC1D.

1971 ◽  
Author(s):  
D E Neal ◽  
G K Leaf ◽  
A S Kennedy
Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2628 ◽  
Author(s):  
Huaqiang Chen ◽  
Jinlong Du ◽  
Yanxia Liang ◽  
Peipei Wang ◽  
Jinchi Huang ◽  
...  

This paper provides a new method to compare and then reveal the vacancy sink efficiencies quantitively between different hetero-interfaces with a shared Cu layer in one sample, in contrast to previous studies, which have compared the vacancy sink efficiencies of interfaces in different samples. Cu-Nb-Cu-V nanoscale metallic multilayer composites (NMMCs) containing Cu/V and Cu/Nb interfaces periodically were prepared as research samples and bombarded with helium ions to create vacancies which were filled by helium bubbles. A special Cu layer shared by adjoining Cu/V and Cu/Nb interfaces exists, in which the implanted helium concentration reaches its maximum and remains nearly constant with a well-designed incident energy. The results show that bubble-denuded zones (BDZ) close to interfaces exist, and that the width of the BDZ close to the Cu/V interface is less than that of Cu/Nb interface. This result is explained by one-dimensional diffusion theory, and the ratio of vacancy sink efficiency between Cu/V and Cu/Nb interfaces is calculated. Conclusively, Cu/Nb interfaces are more efficient than Cu/V interfaces in eliminating vacancies induced by radiation.


2005 ◽  
Vol 46 (4) ◽  
pp. 495-505
Author(s):  
D. P. Wilson ◽  
D. L. S. McElwain

AbstractHumoral immunity is that aspect of specific immunity that is mediated by B lymphocytes and involves the neutralising of disease-producing microorganisms, called pathogens, by means of antibodies attaching to the pathogen's binding sites. This inhibits the pathogen's entry into target cells. We present a master equation in both discrete and in continuous form for a ligand bound atnsites becoming a ligand bound atmsites in a given interaction time. To track the time-evolution of the antibody-ligand interaction, it is shown that the process is most easily treated classically and that in this case the master equation can be reduced to an equivalent one-dimensional diffusion equation. Thus well-known diffusion theory can be applied to antibody-ligand interactions. We consider three distinct cases depending on whether the probability of antibody binding compared to the probability of dissociation is relatively large, small or comparable, and numerical solutions are given.


1995 ◽  
Vol 120 (2) ◽  
pp. 110-123 ◽  
Author(s):  
William K. Terry ◽  
David W. Nigg

1966 ◽  
Author(s):  
D.A. Meneley ◽  
L.C. Kvitek ◽  
D.M. O'Shea

2021 ◽  
Vol 22 (5) ◽  
pp. 2398
Author(s):  
Wooyoung Kang ◽  
Seungha Hwang ◽  
Jin Young Kang ◽  
Changwon Kang ◽  
Sungchul Hohng

Two different molecular mechanisms, sliding and hopping, are employed by DNA-binding proteins for their one-dimensional facilitated diffusion on nonspecific DNA regions until reaching their specific target sequences. While it has been controversial whether RNA polymerases (RNAPs) use one-dimensional diffusion in targeting their promoters for transcription initiation, two recent single-molecule studies discovered that post-terminational RNAPs use one-dimensional diffusion for their reinitiation on the same DNA molecules. Escherichia coli RNAP, after synthesizing and releasing product RNA at intrinsic termination, mostly remains bound on DNA and diffuses in both forward and backward directions for recycling, which facilitates reinitiation on nearby promoters. However, it has remained unsolved which mechanism of one-dimensional diffusion is employed by recycling RNAP between termination and reinitiation. Single-molecule fluorescence measurements in this study reveal that post-terminational RNAPs undergo hopping diffusion during recycling on DNA, as their one-dimensional diffusion coefficients increase with rising salt concentrations. We additionally find that reinitiation can occur on promoters positioned in sense and antisense orientations with comparable efficiencies, so reinitiation efficiency depends primarily on distance rather than direction of recycling diffusion. This additional finding confirms that orientation change or flipping of RNAP with respect to DNA efficiently occurs as expected from hopping diffusion.


Sign in / Sign up

Export Citation Format

Share Document