scholarly journals ''MATEXP,'' A GENERAL PURPOSE DIGITAL COMPUTER PROGRAM FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS BY THE MATRIX EXPONENTIAL METHOD.

Author(s):  
S.J. Ball ◽  
R.K. Adams
2021 ◽  
Vol 247 ◽  
pp. 06047
Author(s):  
Zack Taylor ◽  
Benjamin Collins ◽  
Ivan Maldonado

Matrix exponential methods have long been utilized for isotopic depletion in nuclear fuel calculations. In this paper we discuss the development of such methods in addition to species transport for liquid fueled molten salt reactors (MSRs). Conventional nuclear reactors work with fixed fuel assemblies in which fission products and fissile material do not transport throughout the core. Liquid fueled molten salt reactors work in a much different way, allowing for material to transport throughout the primary reactor loop. Because of this, fission product transport must be taken into account. The set of partial differential equations that apply are discretized into systems of first order ordinary differential equations (ODEs). The exact solution to the set of ODEs is herein being estimated using the matrix exponential method known as the Chebychev Rational Approximation Method (CRAM).


SIMULATION ◽  
1965 ◽  
Vol 4 (5) ◽  
pp. 317-323 ◽  
Author(s):  
Joseph L. Hammond

State variable techniques are reviewed and applied to analog computer programming. The concise rep resentation for ordinary differential equations made possible by this technique is used to formulate a gen eral program for all such equations. It is shown that an analog computer program based on state variables will not have redundant integrators. The fact that the use of state variables facilitates the choice of variables internal to an analog com puter program is illustrated by two techniques, namely, (1) a technique for avoiding derivatives of the forcing function in programming a large class of ordinary differential equations, and (2) a technique for simulating certain systems in such a way that the effect of each characteristic root is placed in evi dence.


1987 ◽  
Vol 10 (1) ◽  
pp. 205-207
Author(s):  
Lloyd K. Williams

In this paper we find closed form solutions of some Riccati equations. Attention is restricted to the scalar as opposed to the matrix case. However, the ones considered have important applications to mathematics and the sciences, mostly in the form of the linear second-order ordinary differential equations which are solved herewith.


Sign in / Sign up

Export Citation Format

Share Document