step index
Recently Published Documents


TOTAL DOCUMENTS

831
(FIVE YEARS 136)

H-INDEX

42
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Mario Zitelli ◽  
Yifan SUN ◽  
Mario Ferraro ◽  
Fabio Mangini ◽  
Oleg Sidelnikov ◽  
...  
Keyword(s):  

2022 ◽  
pp. 1-1
Author(s):  
Pavel S. Anisimov ◽  
Vasily S. Motolygin ◽  
Viacheslav V. Zemlyakov ◽  
Jiexing Gao
Keyword(s):  

Author(s):  
Muhammad Arif Bin Jalil

Abstract: Optical fiber is a medium that made by silica or plastic, and widely used in transmitting information over longer distance especially in communication system. There are three types of fiber optic used in this project which are single mode stepindex (SMSI), multimode step-index (MMSI), and multimode graded-index (MMGI) in optical communication system. There are three objectives in this project in order to get the suitable optical fibers in the communication system. First objective is to simulate the result by using Excel and Origin software. The data and the formula of fiber optics will be key in through Excel software while the graph will be analyzed by using Origin software. The second objective is to compare the different types of fiber optics in communication system by comparing the several of their characteristics such as numerical aperture (NA), acceptance angle (θ(a)) and propagation constant (β). The performance of all types fiber optics are analyzed from the result using the standard communication wavelength of 1550 nm. The core diameter for SMSI, MMSI, and MMGI are 9, 200 and 50 μm respectively while the cladding diameter for SMSI and MMGI is 125 μm and 240 μm for MMSI. This diameter also been analyzed by using the standard value for optical communication system. Then, the comparison between SMSI, MMSI and MMGI will be made to choose the more suitable for optical communication system based on their characteristics. From the results, MMSI and MMGI give best performance compared to SMSI. After that, the third objective is to make the comparison between MMSI and MMGI in term of intermodal dispersion to compare the efficiencies of fiber optics. MMGI give the better result in terms of efficiencies for communication system compared to MMSI. Keyword: Single Mode Step-Index (SMSI), Multimode Step-Index (MMSI), Multimode Graded-Index (MMGI), Communication System, Excel and Origin Software


2021 ◽  
Author(s):  
Xuehao Hu ◽  
Zhen Chen ◽  
Xin Cheng ◽  
Rui Min ◽  
Hang Qu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zahra Mohammadzahery ◽  
Maryam Jandaghi ◽  
Ebrahim Aghayari ◽  
Hasan Nabavi

AbstractIn this paper, we experimentally demonstrate that a nonlinear Kerr effect in suitable coupling conditions can introduce a spatially self-cleaned output beam for a few-mode step-index fiber. The impact of the distribution of the initial excited modes on spatial beam self-cleaning has been demonstrated. It is also shown experimentally that for specific initial conditions, the output spatial pattern of the pulsed laser can be reshaped into the LP11 mode due to nonlinear coupling among the propagating modes. Self-cleaning into LP11 mode required higher input powers with respect to the power threshold for LP01 mode self-cleaning. Our experimental results are in agreement with the results of numerical calculations.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4218
Author(s):  
Branko Drljača ◽  
Svetislav Savović ◽  
Milan S. Kovačević ◽  
Ana Simović ◽  
Ljubica Kuzmanović ◽  
...  

By solving the time-dependent power flow equation, we present a novel approach for evaluating the bandwidth in a multimode step-index polymer photonic crystal fiber (SI PPCF) with a solid core. The bandwidth of such fiber is determined for various layouts of air holes and widths of Gaussian launch beam distribution. We found that the lower the NA of SI PPCF, the larger the bandwidth. The smaller launch beam leads to a higher bandwidth for short fibers. The influence of the width of the launch beam distribution on bandwidth lessens as the fiber length increases. The bandwidth tends to its launch independent value at a particular fiber length. This length denotes the onset of the steady state distribution (SSD). This information is useful for multimode SI PPCF applications in telecommunications and optical fiber sensing applications.


APL Photonics ◽  
2021 ◽  
Author(s):  
Louisiane Devaud ◽  
Marc Guillon ◽  
Ivan Gusachenko ◽  
Sylvain Gigan

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3397
Author(s):  
María Ángeles Losada ◽  
María Mazo ◽  
Alicia López ◽  
Candela Muzás ◽  
Javier Mateo

Large-core polymer optical fiber (POF) links have limitations in capacity and reach due to the fibers’ high modal dispersion and attenuation. Most of these links use red laser diodes, even though the attenuation spectrum of poly(methyl methacrylate) (PMMA), the basic polymer used to manufacture these fibers, has a lower minimum in the green region. Therefore, we set out to explore the potential use of green light in transmission systems, comparing the performances of three step-index polymer optical fibers (SI-POFs) with different numerical apertures. We obtained measurements of intensity distribution, frequency response and bit error rate (BER), as functions of fiber length. We have also compared the fibers’ frequency responses with red and green light for a few selected lengths. Our results confirm that SI-POFs attenuate less in response to green light, which can increase their length. This advantage is partially counterbalanced by a slightly higher dispersion that limits the capacity of the high-aperture fibers, particularly at relatively short lengths. Our conclusions are critical to understanding SI-POF behavior and to designing thorough SI-POF models that can aid the design of POF-based links for different scenarios.


Sign in / Sign up

Export Citation Format

Share Document