scholarly journals Systems study of the feasibility of high-level nuclear waste fractionation for thermal stress control in a geologic repository: appendices

1983 ◽  
Author(s):  
R.W. McKee ◽  
H.K. Elder ◽  
R.F. McCallum ◽  
D.J. Silviera ◽  
J.L. Swanson ◽  
...  
Author(s):  
Sandra Dalvit Dunn ◽  
Stephen W. Webb ◽  
John Del Mar ◽  
Michael T. Itamura ◽  
Nicholas D. Francis

The Yucca Mountain Project (YMP) is currently designing a geologic repository for high level nuclear waste. The design encompasses two distinct phases, the pre-closure period where temperatures within the repository will be controlled by active ventilation, and the post-closure period where the repository will be sealed. A prerequisite for designing the repository is the ability to both understand and control the heat generated from the decay of the nuclear waste. This decay heat affects the performance of both the waste packages and the emplacement drift. The ability to accurately model the complex heat transfer within the repository is critical to the understanding of the repository performance. Currently, computational fluid dynamics codes are being used to model the post-closure performance of the repository. Prior to using the codes on the project they were required to be thoroughly validated. Eight pilot-scale tests were performed at the Department of Energy North Las Vegas Atlas Facility to evaluate the processes that govern thermal transport in an environment that scales to the proposed repository environment during the post closure period. The tests were conducted at two geometric scales (25 and 44% of full scale), with and without drip shields, and under both uniform and distributed heat loads. The tests provided YMP specific data for model validation. A separate CFD model was developed for each of the four test configurations. The models included the major components of the experiment, including the waste packages (heated steel canisters), invert floor, and emplacement drift (insulated concrete pipe). The calculated model temperatures of the surfaces and fluids, and velocities, are compared with experimental data.


1992 ◽  
Vol 294 ◽  
Author(s):  
J. C. Cunnane ◽  
J. K. Bates ◽  
W. L. Ebert ◽  
X. Feng ◽  
J. J. Mazer ◽  
...  

ABSTRACTWith the imminent startup, in the United States, of facilities for vitrification of high-level nuclear waste, a document has been prepared that compiles the scientific basis for understanding the alteration of the waste glass products under the range of service conditions to which they may be exposed during storage, transportation, and eventual geologic disposal. A summary of selected parts of the content of this document is provided.Waste glass alterations in a geologic repository may include corrosion of the glass network due to groundwater and/or water vapor contact. Experimental testing results are described and interpreted in terms of the underlying chemical reactions and physical processes involved. The status of mechanistic modeling, which can be used for long-term predictions, is described and the remaining uncertainties associated with long-term simulations are summarized.


2013 ◽  
Vol 3 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Hamid Aït Abderrahim ◽  
Didier De Bruyn ◽  
Gert Van den Eynde ◽  
Sidney Michiels

Sign in / Sign up

Export Citation Format

Share Document