scholarly journals Overtest for Simulated Defense High-Level Waste (Room B): In situ data report (May 1984--February 1988): Waste Isolation Pilot Plant (WIPP) Thermal/Structural Interactions Program

1990 ◽  
Author(s):  
D Munson ◽  
R Jones ◽  
J Ball ◽  
R Clancy ◽  
D Hoag ◽  
...  
1991 ◽  
Vol 257 ◽  
Author(s):  
G.G. Wicks ◽  
A.R. Lodding ◽  
P.B. Macedo ◽  
D.E. Clark

ABSTRACTThe first field tests conducted in the United States involving burial of simulated high-level waste [HLW] forms and package components, were started in July of 1986. The program, called the Materials Interface Interactions Test or MIIT, is the largest cooperative field-testing venture in the international waste management community. Included in the study are over 900 waste form samples comprising 15 different systems supplied by 7 countries. Also included are approximately 300 potential canister or overpack metal samples along with more than 500 geologic and backfill specimens. There are almost 2000 relevant interactions that characterize this effort which is being conducted in the bedded salt site at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The MIIT program represents a joint endeavor managed by Sandia National Laboratories in Albuquerque, N.M., and Savannah River Laboratory in Aiken, S.C. and sponsored by the U.S. Department of Energy. Also involved in MIIT are participants from various laboratories and universities in France, Germany, Belgium, Canada, Japan, Sweden, the United Kingdom, and the United States. In July of 1991, the experimental portion of the 5-yr. MIIT program was completed. Although only about 5% of all MIIT samples have been assessed thus far, there are already interesting findings that have emerged. The present paper will discuss results obtained for SRS 165/TDS waste glass after burial of 6 mo., 1 yr. and 2 yrs., along with initial analyses of 5 yr. samples.


1997 ◽  
Author(s):  
D.E. Munson ◽  
D.L. Hoag ◽  
D.A. Blankenship ◽  
W.F. DeYonge ◽  
D.M. Schiermeister ◽  
...  

2015 ◽  
Vol 79 (6) ◽  
pp. 1665-1673 ◽  
Author(s):  
Magnus Kronberg ◽  
Jan Gugala ◽  
Keijo Haapala

AbstractOver the last five decades private and national energy programmes worldwide have been producing a variety of radioactive wastes. One of the safest ways of disposing of this waste is to bury it deep underground in purpose-built geological disposal facilities. Currently, there is no operating geological repository in Europe for high-level waste but the goal of the IGD-TP is that the first repository shall be fully operational before the year 2025. Several studies and experiments are ongoing at various potential repository sites in Europe with the goal to establish general approaches that can be adapted for any country in need of a geological repository.The Swedish Nuclear Fuel and Waste Management Co (SKB) in Sweden and Posiva Oy in Finland are developing a method for geological disposal of high-level long-lived nuclear waste in crystalline rock, the KBS-3 method. KBS-3V (vertical) is both organizations reference design, but KBS-3H (horizontal) emplacement is also being researched as a potential alternative. Of high importance in the development is demonstrating the technical feasibilityin situof safe and reliable construction, manufacturing, disposal and sealing of such geological disposal facilities. Parts of these demonstrations are carried out under the framework of EurAtom/FP7 and one of these projects is the LUCOEX project where SKB is demonstrating horizontal emplacement, the Multi Purpose Test (MPT), and Posiva is demonstrating vertical buffer installation processes.The MPT includes the key components of the horizontal design and comprises all essential steps; manufacturing of the full-scale components, their assembly, installation in the drift and monitoring of the early buffer evolution. The MPT installation was successfully performed in late 2013. By combining the components, an initial verification of the design implementation has been achieved. At the same time, integrating the components has meant the recognition of some design weaknesses and the design will be updated accordingly.Posiva's KBS-3V buffer installation equipment that places buffer blocks with high precision in vertical deposition holes is currently being developed and will be tested during 2014 and 2015 in real underground conditions. The machine uses vacuum lifting tools for moving the buffer blocks and laser scanning technology to position both the machine and blocks. Functionality of the concept and equipment selected will be confirmed by the tests and the installation tests will provide important information about the suitability of the selected buffer dimensions and tolerances.


1981 ◽  
Author(s):  
D. II Gombert ◽  
D. B. Chamberlain ◽  
E. L. Colton

Sign in / Sign up

Export Citation Format

Share Document