scholarly journals Heat flow near Kyle Hot Springs, Buena Vista Valley, Nevada

1976 ◽  
Author(s):  
J.H. Sass ◽  
H.A. Wollenberg ◽  
D.E. di Somma ◽  
J.P. Ziagos
Keyword(s):  

1976 ◽  
Author(s):  
J.H. Sass ◽  
H.A. Wollenberg ◽  
D. E. di Somma ◽  
J.P. Ziagos
Keyword(s):  


1977 ◽  
Author(s):  
J.H. Sass ◽  
J.P. Ziagos ◽  
H.A. Wollenberg ◽  
R.J. Munroe ◽  
D. E. di Somma ◽  
...  


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiao Tian ◽  
Yiman Li ◽  
Xiaocheng Zhou ◽  
Zhonghe Pang ◽  
Liwu Li ◽  
...  

Hot springs and igneous rocks are present widely in southeast China, influenced by the subduction of the Western Pacific and Philippine Sea Plates. This study reports on new data of chemical compositions and He–Ne–C isotopes for gas samples from representative hot springs and wells in the Guangdong and Fujian provinces to identify the origin of hydrothermal volatiles and provide insight into geothermal tectonic affinities. The primary hydrothermal volatile component from southeast China is atmospheric N2, with a volumetric percentage of 82.19%–98.29%. It indicates medium-low temperature geothermal systems where geothermal fluids suffered a shallow circulation in closed fracture systems. Low CO2 and CH4 contents and their depleted δ13C values confirmed the small number of deep-derived components in the study area. However, spatially discernible geochemical characteristics imply enhanced hydrothermal fluid convection in the adjacent area of the two provinces, including the Fengshun, Zhangzhou, Longyan, and Sanming geothermal fields. Specifically, the He–Ne isotopes from this area exhibit mantle He contribution of more than 10% and mantle heat flow accounts for more than half of the total heat flow. Moreover, according to the thermal background calculations, the highest heat flow value of 77.7 mW/m2 is indicated for the Zhangzhou geothermal area and the lowest value of 54.7 mW/m2 is indicated for the Maoming geothermal area. Given the epicenter distributions and the corresponding earthquake magnitudes, the NE-trending faults are heat-control tectonic structures and their intersections with the NW-trending faults provided expedite channels for geothermal fluids rising to the surface. Therefore, the preferred development potential of geothermal resources can be expected in the adjacent area of the two provinces where two sets of active faults crossed. This study provides critical information on understanding the geothermal distribution controlled by the tectonic structure in southeast China.





Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2236
Author(s):  
Jian Kuang ◽  
Shihua Qi ◽  
Xiangyun Hu

Southeast Asia contains significant natural geothermal resources. However, the mechanism for generating geothermal anomalies by the crust–mantle structure still needs to define. In this study, we focused on Guangdong Province, China. We conducted three magnetotelluric profiles to interpret the crust and upper mantle structure beneath the Guangdong Province and its geothermal implications. Based on data analysis results, a two-dimension inversion was conducted on the dataset. The inversion model revealed that there is a presence of upwelling channels, and some channels are connected with shallow crustal fault zone; the thickness of crust and lithosphere in Guangdong Province is relatively thin. Such a special crust and upper mantle structure form high surface heat flow. Merged with previous research, our results imply that massive Late Mesozoic granites, which contain high radioactive heat generating elements, are distributed on the surface and underground of Guangdong Province. Based on the correlation between high radioactive Late Mesozoic granites, crust-upper mantle structure, surface heat flow, and locations of natural hot springs, we established a geothermal conceptual model to visualize the origin of a current geophysical and geothermal anomaly in Guangdong Province.



1977 ◽  
Author(s):  
J.H. Sass ◽  
J.P. Ziagos ◽  
H.A. Wollenberg ◽  
R.J. Munroe ◽  
D.E. di Somma ◽  
...  


2021 ◽  
pp. 014459872110506
Author(s):  
Feng Liu ◽  
Guiling Wang ◽  
Wei Zhang ◽  
Yizuo Shi ◽  
Chen Yue ◽  
...  

Geothermal resources as clean and renewable energy can be utilized for agriculture, tourism, and industry. The assessment of geothermal potential and the study of genetic mechanism of the geothermal system is an essential part of geothermal resource development. In this study, 16 steady-state temperature logs are obtained in the mountainous area on the northern margin of North China. Thermal conductivity and heat production rates are tested or collected from more than 200 rock samples of these wells and outcrops around the study area. Based on these data, for the first time, the detailed delineations of temperature distributions, genetic mechanisms of geothermal systems, and resource potential of Hot Dry Rock in the study area are achieved. The heat flow map indicates a low heat flow state with an average value of 53.1 mW/m2 in the study area, which is lower than the average value of 62.5 mW/m2 in mainland China. The distribution of hot springs in the area is mainly controlled by fault systems. Heat flow only exhibits a minor effect on the temperature of hot springs and geothermal wells. On this basis, the deep temperature distribution within 3–10 km depths of the study area is calculated using the one-dimensional steady-state heat conduction equation. With it, the reservoir depths of hot springs are estimated to be 3–5 km with temperatures ranging from 70°C to 110°C. Furthermore, a conceptual model for the geothermal system in the study area is derived. According to the results, Northeastern Chengde and northern Beijing exhibit the highest temperatures at all depths. Similar patterns are observed in the temperature distribution maps and the heat flow map, which suggest that the deep temperature distribution is mainly controlled by regional heat flow. With the depth increases, the temperature shows larger variation at each depth level, which is possibly caused by the heterogeneity of crustal composition. According to our resource assessment by volumetric method, the exploitable potential of Hot Dry Rock within the depth of 7–10 km of the study area is equivalent to about 3.1 × 1011 tons of standard coal, but the barrier is still existing for development under the current technical and economic conditions.



1980 ◽  
Vol 85 (B5) ◽  
pp. 2559 ◽  
Author(s):  
W. T. Parry ◽  
J. M. Ballantyne ◽  
N. L. Bryant




Sign in / Sign up

Export Citation Format

Share Document