hydrothermal plumes
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 24)

H-INDEX

39
(FIVE YEARS 1)

2022 ◽  
Vol 8 ◽  
Author(s):  
Charlotte Kleint ◽  
Rebecca Zitoun ◽  
René Neuholz ◽  
Maren Walter ◽  
Bernhard Schnetger ◽  
...  

Hydrothermal vents are a source of many trace metals to the oceans. Compared to mid-ocean ridges, hydrothermal vent systems at arcs occur in shallower water depth and are much more diverse in fluid composition, resulting in highly variable water column trace metal concentrations. However, only few studies have focused on trace metal dynamics in hydrothermal plumes at volcanic arcs. During R/V Sonne cruise SO253 in 2016/2017, hydrothermal plumes from two hydrothermally active submarine volcanoes along the Kermadec arc in the Southwest Pacific Ocean were sampled: (1) Macauley, a magmatic dominated vent site located in water depths between 300 and 680 m, and (2) Brothers, located between 1,200 and 1,600 m water depth, where hydrothermalism influenced by water rock interactions and magmatically influenced vent sites occur near each other. Surface currents estimated from satellite-altimeter derived currents and direct measurements at the sites using lowered acoustic Doppler current profilers indicate the oceanic regime is dominated by mesoscale eddies. At both volcanoes, results indicated strong plumes of dissolved trace metals, notably Mn, Fe, Co, Ni, Cu, Zn, Cd, La, and Pb, some of which are essential micronutrients. Dissolved metal concentrations commonly decreased with distance from the vents, as to be expected, however, certain element/Fe ratios increased, suggesting a higher solubility of these elements and/or their stronger stabilization (e.g., for Zn compared to Fe). Our data indicate that at the magmatically influenced Macauley and Brothers cone sites, the transport of trace metals is strongly controlled by sulfide nanoparticles, while at the Brothers NW caldera wall site iron oxyhydroxides seem to dominate the trace metal transport over sulfides. Solution stabilization of trace metals by organic complexation appears to compete with particle adsorption processes. As well as extending the generally sparse data set for hydrothermal plumes at volcanic arc systems, our study presents the first data on several dissolved trace metals in the Macauley system, and extends the existing plume dataset of Brothers volcano. Our data further indicate that chemical signatures and processes at arc volcanoes are highly diverse, even on small scales.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cécile Cathalot ◽  
Erwan G. Roussel ◽  
Antoine Perhirin ◽  
Vanessa Creff ◽  
Jean-Pierre Donval ◽  
...  

AbstractCarbon budgets of hydrothermal plumes result from the balance between carbon sinks through plume chemoautotrophic processes and carbon release via microbial respiration. However, the lack of comprehensive analysis of the metabolic processes and biomass production rates hinders an accurate estimate of their contribution to the deep ocean carbon cycle. Here, we use a biogeochemical model to estimate the autotrophic and heterotrophic production rates of microbial communities in hydrothermal plumes and validate it with in situ data. We show how substrate limitation might prevent net chemolithoautotrophic production in hydrothermal plumes. Elevated prokaryotic heterotrophic production rates (up to 0.9 gCm−2y−1) compared to the surrounding seawater could lead to 0.05 GtCy−1 of C-biomass produced through chemoorganotrophy within hydrothermal plumes, similar to the Particulate Organic Carbon (POC) export fluxes reported in the deep ocean. We conclude that hydrothermal plumes must be accounted for as significant deep sources of POC in ocean carbon budgets.


2021 ◽  
Vol 118 (40) ◽  
pp. e2026654118
Author(s):  
Timothy J. Shaw ◽  
George W. Luther ◽  
Richard Rosas ◽  
Véronique E. Oldham ◽  
Nicole R. Coffey ◽  
...  

Historically, the production of reactive oxygen species (ROS) in the ocean has been attributed to photochemical and biochemical reactions. However, hydrothermal vents emit globally significant inventories of reduced Fe and S species that should react rapidly with oxygen in bottom water and serve as a heretofore unmeasured source of ROS. Here, we show that the Fe-catalyzed oxidation of reduced sulfur species in hydrothermal vent plumes in the deep oceans supported the abiotic formation of ROS at concentrations 20 to 100 times higher than the average for photoproduced ROS in surface waters. ROS (measured as hydrogen peroxide) were determined in hydrothermal plumes and seeps during a series of Alvin dives at the North East Pacific Rise. Hydrogen peroxide inventories in emerging plumes were maintained at levels proportional to the oxygen introduced by mixing with bottom water. Fenton chemistry predicts the production of hydroxyl radical under plume conditions through the reaction of hydrogen peroxide with the abundant reduced Fe in hydrothermal plumes. A model of the hydroxyl radical fate under plume conditions supports the role of plume ROS in the alteration of refractory organic molecules in seawater. The ocean’s volume circulates through hydrothermal plumes on timescales similar to the age of refractory dissolved organic carbon. Thus, plume-generated ROS can initiate reactions that may affect global ocean carbon inventories.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Sergei Sudarikov ◽  
Egor Narkevsky ◽  
Vladimir Petrov

In 2018–2020 the research vessel (R/V) Professor Logachev (cruises 39 and 41) carried out geological and geochemical studies in the bottom waters of the Mid-Atlantic Ridge hydrothermal fields at 14°45’ N, 13°07’ N, and 13°09’ N. Two new hydrothermal fields were discovered—the Molodezhnoye and Koralovoye. Standard conductivity, temperature, and depth (CTD) sounding with a methane sensor was accompanied by video surveillance and sampling of rocks and water. The rocks were characterized by a zonal composition with opal and sulfides of copper and zinc. An increase in methane concentration values was accompanied by CTD anomalies in the bottom waters. The methane anomaly was formed within the hydrothermal plume of both high-temperature and low-temperature systems. Methane was almost absent in the plume of neutral buoyancy and was associated in all the studied manifestations with the ascending flow of hot waters over the hydrothermal vents. The hydrothermal plumes were characterized by increased Cu, Zn, and Fe concentrations at background Mn concentrations. Signs of low-temperature hydrothermal activity were also observed. Different sources and mechanisms are required to explain the elevated concentrations of base metals and methane in the hydrothermal plumes.


2021 ◽  
Vol 40 (6) ◽  
pp. 16-25
Author(s):  
Weifeng Yang ◽  
Xinxing Zhang ◽  
Min Chen ◽  
Ziming Fang ◽  
Yusheng Qiu

2021 ◽  
Vol 300 ◽  
pp. 95-118
Author(s):  
Jong-Mi Lee ◽  
Phoebe J. Lam ◽  
Sebastian M. Vivancos ◽  
Frank J. Pavia ◽  
Robert F. Anderson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document