scholarly journals Geochemical Characteristics of Hydrothermal Volatiles From Southeast China and Their Implications on the Tectonic Structure Controlling Heat Convection

2021 ◽  
Vol 9 ◽  
Author(s):  
Jiao Tian ◽  
Yiman Li ◽  
Xiaocheng Zhou ◽  
Zhonghe Pang ◽  
Liwu Li ◽  
...  

Hot springs and igneous rocks are present widely in southeast China, influenced by the subduction of the Western Pacific and Philippine Sea Plates. This study reports on new data of chemical compositions and He–Ne–C isotopes for gas samples from representative hot springs and wells in the Guangdong and Fujian provinces to identify the origin of hydrothermal volatiles and provide insight into geothermal tectonic affinities. The primary hydrothermal volatile component from southeast China is atmospheric N2, with a volumetric percentage of 82.19%–98.29%. It indicates medium-low temperature geothermal systems where geothermal fluids suffered a shallow circulation in closed fracture systems. Low CO2 and CH4 contents and their depleted δ13C values confirmed the small number of deep-derived components in the study area. However, spatially discernible geochemical characteristics imply enhanced hydrothermal fluid convection in the adjacent area of the two provinces, including the Fengshun, Zhangzhou, Longyan, and Sanming geothermal fields. Specifically, the He–Ne isotopes from this area exhibit mantle He contribution of more than 10% and mantle heat flow accounts for more than half of the total heat flow. Moreover, according to the thermal background calculations, the highest heat flow value of 77.7 mW/m2 is indicated for the Zhangzhou geothermal area and the lowest value of 54.7 mW/m2 is indicated for the Maoming geothermal area. Given the epicenter distributions and the corresponding earthquake magnitudes, the NE-trending faults are heat-control tectonic structures and their intersections with the NW-trending faults provided expedite channels for geothermal fluids rising to the surface. Therefore, the preferred development potential of geothermal resources can be expected in the adjacent area of the two provinces where two sets of active faults crossed. This study provides critical information on understanding the geothermal distribution controlled by the tectonic structure in southeast China.

2015 ◽  
Vol 52 (6) ◽  
pp. 357-367 ◽  
Author(s):  
Guoming Gao ◽  
Guofa Kang ◽  
Guangquan Li ◽  
Chunhua Bai

Based on the geomagnetic field model NGDC-720-V3 (National Geophysical Data Center), the distribution of crustal magnetic anomalies and the Curie surface beneath Tarim Basin, China, and its adjacent area were investigated. The results show that the spatial distribution of the magnetic anomalies in Tarim Basin coincides with the regional tectonic structure, i.e., a basin sandwiched between mountain ranges. Shallow parts of the Curie surface are located in uplifted zones of the basin and correspond well to high values of heat flow. In contrast, deep parts of the Curie surface, having low values of heat flow, are distributed along the depression zones of the basin. The Curie point depth is consistent with the measured heat flow value, with a correlation coefficient of 0.65.


1977 ◽  
Author(s):  
J.H. Sass ◽  
J.P. Ziagos ◽  
H.A. Wollenberg ◽  
R.J. Munroe ◽  
D. E. di Somma ◽  
...  

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Yuqi Zhang ◽  
Xun Zhou ◽  
Haisheng Liu ◽  
Mingxiao Yu ◽  
Kuo Hai ◽  
...  

In the Simao Basin in southwest China widely occur red beds of poor permeability. Nevertheless, more than 100 springs exist in the basin, some of which are hot springs with varying temperature. Hot springs contain abundant information on hydrogeochemical processes and groundwater circulation. In this study, hydrochemical and isotopic analyses and mixed models are used to examine the sources of recharge, heat, and solutes of the hot springs to better understand the subsurface processes and formation mechanisms of different hot springs in the basin. Three types of springs are found in the Simao Basin: springs of HCO3-Na type occur in the metamorphic rocks, springs of HCO3-Ca(Mg) and Cl-HCO3-Na-Ca types in the carbonate rocks, and springs of Cl(SO4)-SO4(Cl)-HCO3-Na(Ca) type in the red beds. Data of δ2H and δ18O indicate that the hot springs in the Simao Basin are meteoric in origin. Incongruent dissolution is the dominant process affecting the chemical compositions of the spring waters. The hydrochemical constituents of the hot springs in the metamorphic rocks, carbonate rocks, and red beds are influenced by the weathering of albite and the dissolution of carbonate, gypsum, anhydrite, and halite. The geothermal waters are mixed with shallow cold waters in their ascending processes, and the mixing ratios of cold water range from 58% to 94%. Due to the effect of mixing, the reservoir temperatures (51°C-127°C) calculated with the quartz geothermometer are regarded as the minimum reservoir temperatures. More reliable reservoir temperatures (91°C-132°C) are estimated with the fixed-Al method. The following mechanisms contribute to the formation of hot springs in the Simao Basin: the groundwater receives recharge from infiltration of precipitation and undergoes deep circulation, during which groundwater is heated by heat flow and incongruently dissolves the subsurface minerals and emerges in the form of hot springs along the permeable fracture or fault zones.


2020 ◽  
Author(s):  
Rahim Masoumi ◽  
Farahnaz Bakhshandeh GharehTapeh ◽  
Bahman Bakhshandeh GharehTapeh

<p>The Moil valley geothermal field is located in the northwest of Sabalan volcano in the northwest of Iran. The geothermal activities attributed to the Sabalan volcano was intensified during Plio-Quaternary time and the manifestations of these activities are observable around the volcano especially in the northwestern corner. The hot springs, surficial manifestations, and extracted fluids from drilled wells represent the whole composition of underground reservoir fluids. The thermal measurement of fluids show wide ranges of temperature of fluids where the hottest spring show 89˚C and the fluids obtained from well samplings show maximum temperature of 202˚C.  </p><p>The reservoir temperature estimations based on different geothermometers show 250˚C for the reservoir. The interpretation of carried out chemical analyses represent Na-K-Cl dominant composition for the studies samples taken from hot springs and drilled wells. All of sampling stations show pH ranges of 4.2-7.6 which reveal acidic to neutral pH range. The variation of TDS for the studied samples ranges between 209 to 320 mg/L. The evaluation of correlation coefficients between main parameters gives notable results. The positive and good correlation coefficient between temperature and Cl is obvious in most of samples and consequently the Cl content of samples increases in high temperature samples.        </p><p>Boron as a key constituent in geothermal fluids show variable concentrations in Moil Valley geothermal fluids and shows 0.28-35 mg/L Boron content in the studied samples. The correlation between Boron and pH for the studied samples is positive. This correlation displays the highest concentrations in pH=7. The main Boron species in this pH value is B(OH)<sub>3</sub> which is more stable comparing to the other Boron phases.  </p><p>The stable isotope analyses of the studied samples show -12 to -9.1‰ for δ<sup>18</sup>O and -71.3 to -77.6‰ for δD. The interpretation of obtained δ<sup>18</sup>O and δD values represents the main role of meteoric waters in reservoir fluids of Moil Valley geothermal field. Magmatic waters show negligible share of the reservoir fluids.      </p><p>The Tritium analyses for the studied samples show 0.1 to 41.7 TU amounts. The evaluation of obtained Tritium contents reveals the circulation of young waters inside the reservoir and considering to the δD/δ<sup>18</sup>O ratios, it is most likely that the recharge zones of the reservoir are situated in close distance and there are evidences of mixing with meteoric waters.</p>


Author(s):  
Neelam Sherwani1 ◽  
Raeid M.M. Abed ◽  
Sergey Dobretsov ◽  
Sheji Mary

In this study, cyanobacterial microbial mats from five hot springs in Oman, namely Al Kasfah Rustaq, Al Thwara Nakhl, Al–Ali Hammam, Gala and Bowsher, were characterized using direct microscopy. Nine monoclonal cyanobacterial cultures were obtained and their extracts in butanol, dichloromethane (DCM) and hexane were screened for antibacterial and antifungal activities. Direct microscopy revealed the presence of 12 different unicellular and filamentous morphotypes, with different distribution in the various mats. Temperature seems to be one of the most important parameters that accounts for the differences in cyanobacterial composition of the mats. Cells of the nine isolates and their aqueous supernatants were subsequently extracted with butanol, DCM and hexane. Dried extracts were tested against nine bacterial (i.e. gram +ve Staphylococcus aureus, Bacillus subtilis and gram –ve, Escherichia coli, Klebsiella pneumoniae, Salmonella choleraesuis, S. enterica, Psuedomonas aeruginosa, Providencia stuartii, and  Acinetobacter calcoaceticus) and two fungal pathogens (Rhizoctonia solani and Pythium sp.). All isolates exhibited antibacterial and antifungal activities, which depended mainly on the type of cyanobacterial culture, type of solvent used and the pathogen tested. The highest antibacterial activity was observed in Phormidium species, and butanol was found to be the most appropriate solvent to extract bioactivity from these cyanobacterial species. The results of this study suggest that thermal springs in Oman harbor diverse types of cyanobacteria, which may constitute an important source of antibacterial and antifungal compounds. Further investigation is needed to purify these compounds and find their chemical compositions and modes of action.    


1976 ◽  
Author(s):  
J.H. Sass ◽  
H.A. Wollenberg ◽  
D.E. di Somma ◽  
J.P. Ziagos
Keyword(s):  

2018 ◽  
Vol 2 (2) ◽  
pp. 48
Author(s):  
Vanadia Martadiastuti ◽  
Agung Harijoko ◽  
I Wayan Warmada ◽  
Kotaro Yonezu

Arjuno-Welirang Volcanic Complex (AWVC) is one of geothermal fields whichlocated in East Java province, Indonesia. It belongs to a Quarternary volcanic arc and has potential for development of electricity. The field is situated in a steep volcanic terrain and there are only few geothermal manifestations, i.e., hot springs, fumaroles, solfataras, steaming ground and hydrothermal alteration. This study aims to classify the type and source of geothermal fluid and to estimate the reservoir condition of Arjuno- Welirang geothermal system. Data are obtained from collecting water samples including hot springs, cold springs, river waters and rain water, then they are analyzed using ICP-AES, titration and ion chromatography.All thermal waters have temperatures from 39.5–53°C and weakly acidic pH (5.2–6.5). Cangar and Padusanhot springs show bicarbonate water, formed by steam condensing or groundwater mixing. On the other hand, Songgoriti shows Cl-HCO3 type, formed by dilution of chloride fluid by either groundwater or bicarbonate water during lateral flow. All of the waters represent immature waters, indicating no strong outflow of neutral Cl-rich deep waters in AWVC. Cl/B ratios show that all water samples have a similar mixing ratio, showing they are from common fluid sources. However, Padusan and Songgoriti have higher Cl/B ratios than Cangar, suggesting that geothermal fluids possibly have reacted with sedimentary rocks before ascending to the surface. All waters were possibly mixed with shallow groundwater and they underwent rock-water reactions at depth before ascending to the surface. An estimated temperatures reservoir calculated using CO2 geothermometer yielded temperatures of 262–263 °C based on collecting of fumarole gas at Mt. Welirang crater. According to their characteristics, Cangar and Padusan are associated with AWVC, while Songgoriti is associated with Mt. Kawi.


2019 ◽  
Vol 8 (1) ◽  
pp. 30-34
Author(s):  
Eliyani Eliyani ◽  
Muhammad Isa ◽  
Khairi Khairi ◽  
Muhammad Rusdi

Gunung api Leumo Matee dan Seumeuregoh, Jaboi Sabang memiliki potensi energi panas bumi sangat besar. Hal ini ditandai dengan adanya manifestasi yang muncul di permukaan seperti uap panas, fumarol dan sumber air panas. Oleh karena itu, perlu dikaji lebih dalam dan menyeluruh untuk mendapatkan informasi yang detail, terutama parameter suhu dan karakteristik batuan/mineral. Sebuah penelitian telah dilakukan untuk kajian geokimia terutama analisis kimia fluida panas bumi. Pendekatan untuk menentukan karakteristik fluida kimia panas bumi dilakukan dengan metode geotermometer untuk mengukur kandungan air (SiO2) dan gas (Na-K) serta konsentrasi anion dan kation. Berdasarkan data pengamatan lapangan dan hasil uji laboratorium yang sudah terstandarisasi menunjukkan bahwa suhu bawah permukaan untuk fluida cair adalah 228oC dan untuk gas sebesar 220oC. Hasil pengujian sampel fluida panas bumi menunjukkan bahwa manifestasi panas bumi Kawah I dan Kawah IV daerah Jaboi, Sabang sangat prospek untuk dikembangkan. Informasi fluida ini menjadi salah satu parameter dalam pengembangan potensi panas bumi. Oleh karena itu sangat penting ditindaklanjuti karena dapat menjawab kebutuhan energi yang ramah lingkungan dan energi terbarukan.  The Volcano Leumo Matee and Seumeuregoh, Jaboi Sabang have enormous geothermal energy potential. This is characterized by the presence of surface manifestations such as hot steam, fumaroles and hot springs. Therefore, it needs to be studied more deeply and thoroughly to obtain detailed information, especially the temperature and rock/mineral characteristics. A study has been carried out for geochemical studies, especially chemical analysis of geothermal fluids. The approach to determine the characteristics of the geothermal chemical fluid is carried out by geothermometry to measure the water content (SiO2) and gas (Na-K) as well as the concentration of anions and cations. Based on field observations and standardized laboratory tests, the subsurface temperature for liquid fluids is 228oC and for gases of 220oC. The results of testing geothermal fluid samples show that the geothermal manifestations of Kawah I and Kawah IV Jaboi, Sabang are very prospects to be developed. This fluid information is one of the parameters in developing geothermal potential. Therefore, it is very important to follow up because it can answer the needs of environmentally friendly energy and renewable energy. Keywords: Volcano, Geothrmometry, jaboi, Sabang, Temperature


Sign in / Sign up

Export Citation Format

Share Document