geothermal fluids
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 91)

H-INDEX

27
(FIVE YEARS 4)

Geothermics ◽  
2022 ◽  
Vol 99 ◽  
pp. 102304
Author(s):  
Mohamed Belhai ◽  
Yasuhiro Fujimitsu ◽  
Rosa Maria Barragan-Reyes ◽  
Tatsuto Iwanaga ◽  
Mamiko Maeno ◽  
...  

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 101
Author(s):  
Paraskevi Lampropoulou ◽  
Vayia Xanthopoulou ◽  
Małgorzata Wojtaszek-Kalaitzidi ◽  
Petros Petrounias ◽  
Elena Zoumpouli ◽  
...  

In this study, siliceous nodules from the world-famous Myrtos beach, as well as from Avithos beach, in the western flanks of Kefalonia Island in Greece are examined by means of petrographical, mineralogical, geochemical and micropaleontological methods. The objectives of this study are to characterize the textural and compositional features of the nodules, with the aim to provide an initial interpretation of their origin and their diagenetic evolution. The studied siliceous nodules are hosted within Lower Cretaceous thin-bedded limestones at Myrtos and Upper Eocene limestones at Avithos. Nodules from both areas display a characteristic concentric texture at a macroscopic and microscopic scale. They both have a dense fine-grained siliceous sedimentary fabric, composed mainly of microcrystalline or cryptocrystalline quartz and moganite with common residual calcite in the case of Avithos. These results, and in particular the shape of the nodules, along the textural and compositional characteristics, indicate different conditions of formation in the two localities, both during the early epigenetic stages, as well as later during the diagenetic processes. Myrtos nodules originated from Si-precursors deposited in a pelagic environment, going through intense Si-replacement. Avithos nodules were deposited in a more proximal environment, being influenced by a less intense silicification. Nevertheless, the higher degree of recrystallization of Avithos samples indicates a syn- or post-diagenetic tectonic activity that resulted in the circulation of geothermal fluids. The conclusions drawn from this work demonstrate the usefulness of thorough studies of siliceous nodules in order to get a more comprehensive understanding of the initial depositional conditions, as well as diagenetic pathways and processes.


Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 498
Author(s):  
Svava Davíðsdóttir ◽  
Baldur Geir Gunnarsson ◽  
Kjartan Björgvin Kristjánsson ◽  
Béatrice A. Ledésert ◽  
Dagur Ingi Ólafsson

Geothermal fluids harnessed for electricity production are generally corrosive because of their interaction with the underground. To ensure the longevity and sustainability of geothermal Organic Rankine Cycle (ORC) powerplants, the choice of heat exchanger material is essential. The performance of heat exchangers is affected by corrosion and scaling due to the geothermal fluids, causing regular cleaning, part replacement, and in the worst cases, extensive repair work. The properties of geothermal fluids vary between geothermal settings and even within geothermal sites. Differences in exposure conditions require different material selection considerations, where factors such as cost, and material efficiency are important to consider. This work studies in-situ geothermal exposure testing of four metals at two geothermal locations, in different geological settings. Four corrosion-resistant materials were exposed for one month at Reykjanes powerplant in Iceland and four months at Chaunoy oil field in France as material candidates for heat exchangers. The tested alloys were analysed for corrosion with macro- and microscopic techniques using optical and electron microscopes, which give an indication of the different frequencies of repairs and replacement. Inconel 625 showed no effects at Reykjanes and cracks at Chaunoy. The others (316L, 254SMO, and titanium grade 2) showed either corrosion or erosion traces at both sites.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiao Tian ◽  
Yiman Li ◽  
Xiaocheng Zhou ◽  
Zhonghe Pang ◽  
Liwu Li ◽  
...  

Hot springs and igneous rocks are present widely in southeast China, influenced by the subduction of the Western Pacific and Philippine Sea Plates. This study reports on new data of chemical compositions and He–Ne–C isotopes for gas samples from representative hot springs and wells in the Guangdong and Fujian provinces to identify the origin of hydrothermal volatiles and provide insight into geothermal tectonic affinities. The primary hydrothermal volatile component from southeast China is atmospheric N2, with a volumetric percentage of 82.19%–98.29%. It indicates medium-low temperature geothermal systems where geothermal fluids suffered a shallow circulation in closed fracture systems. Low CO2 and CH4 contents and their depleted δ13C values confirmed the small number of deep-derived components in the study area. However, spatially discernible geochemical characteristics imply enhanced hydrothermal fluid convection in the adjacent area of the two provinces, including the Fengshun, Zhangzhou, Longyan, and Sanming geothermal fields. Specifically, the He–Ne isotopes from this area exhibit mantle He contribution of more than 10% and mantle heat flow accounts for more than half of the total heat flow. Moreover, according to the thermal background calculations, the highest heat flow value of 77.7 mW/m2 is indicated for the Zhangzhou geothermal area and the lowest value of 54.7 mW/m2 is indicated for the Maoming geothermal area. Given the epicenter distributions and the corresponding earthquake magnitudes, the NE-trending faults are heat-control tectonic structures and their intersections with the NW-trending faults provided expedite channels for geothermal fluids rising to the surface. Therefore, the preferred development potential of geothermal resources can be expected in the adjacent area of the two provinces where two sets of active faults crossed. This study provides critical information on understanding the geothermal distribution controlled by the tectonic structure in southeast China.


2021 ◽  
Author(s):  
Aurelio Melia ◽  
Daniel Roy Faulkner ◽  
David Daniel McNamara

Abstract Greywacke basement rocks in New Zealand host conventional geothermal reservoirs and may supply important hotter and deeper geothermal energy resources in the future. This work combines petrological analyses and physical property measurements of Waipapa greywacke, a basement unit hosting New Zealand geothermal reservoirs, in order to understand better how structurally controlled flow networks develop and channel geothermal fluids within it. Results show intact Waipapa greywacke has high tensile and triaxial compressive strengths, and low intrinsic permeability (~10-21 m2). Permeability of intact Waipapa greywacke does not increase significantly during triaxial loading to failure and is accompanied by minimal changes ultrasonic wave velocities. These data taken together suggest that microcrack development during brittle deformation is very limited. Upon failure, the permeability increases by two orders of magnitude and shows similar permeability to tests performed on synthetic, single, mode I fractures in intact Waipapa greywacke. Permeability persists in Waipapa greywacke fractures under confining pressures of at least 150 MPa. It is concluded that Waipapa greywacke rocks will not allow fluid flow through the matrix of the rock and that substantial geothermal fluid flow will only occur through macrofracture networks.


2021 ◽  
Vol 83 (11) ◽  
Author(s):  
Cristian Montanaro ◽  
Anette Kærgaard Mortensen ◽  
Tobias B. Weisenberger ◽  
Donald B. Dingwell ◽  
Bettina Scheu

AbstractKrafla central volcano in Iceland has experienced numerous basaltic fissure eruptions through its history, the most recent examples being the Mývatn (1724‒1729) and Krafla Fires (1975–1984). The Mývatn Fires opened with a steam-driven eruption that produced the Víti crater. A magmatic intrusion has been inferred as the trigger perturbing the geothermal field hosting Víti, but the cause(s) of the explosive response remain uncertain. Here, we present a detailed stratigraphic reconstruction of the breccia erupted from Víti crater, characterize the lithologies involved in the explosions, reconstruct the pre-eruptive setting, fingerprint the eruption trigger and source depth, and reveal the eruption mechanisms. Our results suggest that the Víti eruption can be classified as a magmatic-hydrothermal type and that it was a complex event with three eruption phases. The injection of rhyolite below a pre-existing convecting hydrothermal system likely triggered the Víti eruption. Heating and pressurization of shallow geothermal fluid initiated disruption of a scoria cone “cap” via an initial series of small explosions involving a pre-existing altered weak zone, with ejection of fragments from at least 60-m depth. This event was superseded by larger, broader, and dominantly shallow explosions (~ 200 m depth) driven by decompression of hydrothermal fluids within highly porous, poorly compacted tuffaceous hyaloclastite. This second phase was triggered when pressurized fluids broke through the scoria cone complex “cap”. At the same time, deep-rooted explosions (~ 1-km depth) began to feed the eruption with large inputs of fragmented rhyolitic juvenile and host rock from a deeper zone. Shallow explosions enlarging the crater dominated the final phase. Our results indicate that at Krafla, as in similar geological contexts, shallow and thin hyaloclastite sequences hosting hot geothermal fluids and capped by low-permeability lithologies (e.g. altered scoria cone complex and/or massive, thick lava flow sequence) are susceptible to explosive failure in the case of shallow magmatic intrusion(s).


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6994
Author(s):  
Alberto Carotenuto ◽  
Francesca Ceglia ◽  
Elisa Marrasso ◽  
Maurizio Sasso ◽  
Laura Vanoli

The highest economic costs of a geothermal plant are basically related to well drilling and heat exchanger maintenance cost due to the chemical aggressiveness of geothermal fluid. The possibility to reduce these costs represents an opportunity to push toward geothermal plants development. Such challenges are even more important in the sites with a low-medium temperature geothermal fluids (90–120 °C) availability, where the use of these fluids for direct thermal uses can be very advantageous. For this reason, in this study, a direct geothermal heating system for a building will be investigated by considering a plastic plate heat exchanger. The choice of a polymeric heat exchanger for this application is upheld by its lower purchase cost and its higher fouling resistance than the common metal heat exchangers, overcoming the economic issues related to conventional geothermal plant. Thus, the plastic plate heat exchanger was, firstly, geometrical and thermodynamical modeled and, after, exergoeconomic optimized. In particular, an exergoeconomic analysis was assessed on the heat exchanger system by using a MATLAB and REFPROP environment, that allows for determination of the exergoeconomic costs of the geothermal fluid extraction, the heat exchanger, and the heating production. A sensitivity analysis was performed to evaluate the effect of main design variable (number of plates/channels) and thermodynamic variable (inlet temperature of geothermal fluid) on yearly exergoeconomic product cost. Then, the proposed methodology was applied to a case study in South of Italy, where a low-medium enthalpy geothermal potential exists. The plate-heat exchanger was used to meet the space heating requests of a single building by the exploitation of low-medium temperature geothermal fluids availability in the selected area. The results show that the inlet temperature of geothermal fluid influences the exergoeconomic cost more than the geometrical parameter. The variation of the exergoeconomic cost of heat exchanger with the inlet geothermal fluid temperature is higher than the change of the exergoeconomic costs associated to wells drilling and pumping with respect to the same variable. This is due the fact that, in the selected zone of South of Italy, it is possible to find geothermal fluid in the temperature range of 90–120 °C, at shallow depth. The product exergoeconomic cost is the lowest when the temperature is higher than 105 °C; thus, the smallest heat exchange area is required. The exergoeconomic optimization determines an optimum solution with a total product cost of 922 €/y for a temperature of geothermal fluid equal to 117 °C and with a number of plates equal to 15.


Sign in / Sign up

Export Citation Format

Share Document