scholarly journals Fundamental Understanding and Development of Low-Cost, High-Efficient Silicon Solar Cells Final Progress Report: Sept. 1999 - June 2000

2001 ◽  
Author(s):  
A ROHATGI ◽  
A EBNG ◽  
V YELUNDUR ◽  
M HILALI ◽  
J JEONG ◽  
...  



2000 ◽  
Author(s):  
A. ROHATGI ◽  
S. NARASIMHA ◽  
J. MOSCHER ◽  
A. EBONG ◽  
S. KAMRA ◽  
...  


2013 ◽  
Vol 479-480 ◽  
pp. 105-109
Author(s):  
Cheng Chuan Wang ◽  
Chia Yun Chen ◽  
Ya Ching Chou

Advances in nanofabrication have resulted in great potentials for improving in both device performance and the manufacturing process of various applications. One revolutionary example is silicon (Si) nanostructures, typically using Si nonopore arrays or Si nonowire arrays, to construct high efficient and low-cost solar cells. In this work, we develop the innovative combined nanostructure arrays with tailored structural profiles using inexpensive, simple and rapid etching processes, whose total reflection is suppressed to 1.6%, approximately 39% less than Si nonopore arrays, and 20% less than Si nanowire arrays. In addition, systematic investigations on wettability of textured Si surfaces reveal the inherent surface oxidation during etching process. These combined nanostructure arrays with tailored antireflection performances, along with the in-depth studies of underlying etching mechanisms, may benefit both the yield and cost efficiently in industrial standard of silicon solar cells.



2006 ◽  
Vol 90 (20) ◽  
pp. 3557-3567 ◽  
Author(s):  
U. Gangopadhyay ◽  
K.H. Kim ◽  
S.K. Dhungel ◽  
U. Manna ◽  
P.K. Basu ◽  
...  


2009 ◽  
Vol 16 (03) ◽  
pp. 381-386 ◽  
Author(s):  
J. B. CHU ◽  
H. B. ZHU ◽  
Z. A. WANG ◽  
Z. Q. BIAN ◽  
Z. SUN ◽  
...  

Single-phase CuInSe 2 films were grown by high vapor selenization of CuIn alloy precursors within a partially closed graphite box. The CuIn precursors were prepared using Cu x In y alloy targets with different composition rates under low vacuum level by a homemade sputtering system. The Cu and In composition rates of the used targets are 11:9, 10:10, and 9:11, respectively. The metallic precursor films were selenized using a two-step temperature profile, i.e. at 250°C and 400–500°C, respectively. The influence of the temperature at the second selenization step on the quality of the CIS absorbing layers was investigated. The CIS films were characterized by X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy. The deposited CIS absorbers selenized at a high temperature of 500°C for 30 min exhibited a single-phase chalcopyrite structure with a preferential orientation in the (112) direction. These layers display uniform, large, and densely packed crystals with a grain size of about 3–5 μm. Cadmium sulfide buffer layer was manufactured by chemical bath deposition method. Bilayers ZnO / ZnO : Al were prepared by RF magnetron sputtering deposition. CIS solar cells with an efficiency of about 6.5% were produced without antireflective films. The method to fabricate CIS solar cells by a combination of the low vacuum sputtering deposition and the graphite box selenization process has provided a simple control process and shown a promising potential for developing high efficient and low-cost CuInSe 2 solar cells.





Sign in / Sign up

Export Citation Format

Share Document