scholarly journals Semianalytical solutions of radioactive or reactive tracer transport in layered fractured media

2001 ◽  
Author(s):  
G J Moridis ◽  
G S Bodvarsson
2016 ◽  
Author(s):  
Claudia Cherubini ◽  
Nicola Pastore ◽  
Concetta I. Giasi ◽  
Nicoletta Maria Allegretti

Abstract. Low enthalpy geothermal energy is a renewable resource that is still underexploited nowadays, in relation to its potential for development in the society worldwide. Most of its applicabilities have already been investigated, such as: heating and cooling of private and public buildings, roads defrost, cooling of industrial processes, food drying systems, desalination. One of the major limitations related to the choice of installing low enthalpy geothermal power plants regards the initial investment costs. In order to increase the optimal efficiency of installations which use groundwater as geothermal resource, flow and heat transport dynamics in aquifers need to be well characterized. Especially in fractured rock aquifers these processes represent critical elements that are not well known. Therefore there is a tendency to oversize geothermal plants. In literature there are very few studies on heat transport especially in fractured media. This study is aimed to deepen the understanding of this topic through heat transport experiments in fractured network and their interpretation. The heat transfer tests have been carried out on the experimental apparatus previously employed to perform flow and tracer transport experiments, which has been modified in order to analyze heat transport dynamics in a network of fractures. In order to model the obtained thermal breakthrough curves, the Explicit Network Model (ENM) has been used, which is based on an adaptation of a Tang's solution for the transport of the solutes in a semi-infinite single fracture embedded in a porous matrix. Parameter estimation, time moment analysis, tailing character and other dimensionless parameters have permitted to better understand the dynamics of heat transport and the efficiency of heat exchange between the fractures and matrix. The results have been compared with the previous experimental studies on solute transport.


2017 ◽  
Vol 24 (1) ◽  
pp. 23-42 ◽  
Author(s):  
Claudia Cherubini ◽  
Nicola Pastore ◽  
Concetta I. Giasi ◽  
Nicoletta Maria Allegretti

Abstract. Low enthalpy geothermal energy is a renewable resource that is still underexploited nowadays in relation to its potential for development in society worldwide. Most of its applications have already been investigated, such as heating and cooling of private and public buildings, road defrosting, cooling of industrial processes, food drying systems or desalination. Geothermal power development is a long, risky and expensive process. It basically consists of successive development stages aimed at locating the resources (exploration), confirming the power generating capacity of the reservoir (confirmation) and building the power plant and associated structures (site development). Different factors intervene in influencing the length, difficulty and materials required for these phases, thereby affecting their cost. One of the major limitations related to the installation of low enthalpy geothermal power plants regards the initial development steps that are risky and the upfront capital costs that are huge. Most of the total cost of geothermal power is related to the reimbursement of invested capital and associated returns. In order to increase the optimal efficiency of installations which use groundwater as a geothermal resource, flow and heat transport dynamics in aquifers need to be well characterized. Especially in fractured rock aquifers these processes represent critical elements that are not well known. Therefore there is a tendency to oversize geothermal plants. In the literature there are very few studies on heat transport, especially on fractured media. This study is aimed at deepening the understanding of this topic through heat transport experiments in fractured networks and their interpretation. Heat transfer tests have been carried out on the experimental apparatus previously employed to perform flow and tracer transport experiments, which has been modified in order to analyze heat transport dynamics in a network of fractures. In order to model the obtained thermal breakthrough curves, the Explicit Network Model (ENM) has been used, which is based on an adaptation of Tang's solution for the transport of the solutes in a semi-infinite single fracture embedded in a porous matrix. Parameter estimation, time moment analysis, tailing character and other dimensionless parameters have permitted a better understanding of the dynamics of heat transport and the efficiency of heat exchange between the fractures and the matrix. The results have been compared with the previous experimental studies on solute transport.


2006 ◽  
Vol 10 (2) ◽  
pp. 131-136
Author(s):  
Jeongkon Kim ◽  
Andrew Duguid ◽  
Franklin W. Schwartz

1988 ◽  
Vol 24 (12) ◽  
pp. 2049-2060 ◽  
Author(s):  
Y. W. Tsang ◽  
C. F. Tsang ◽  
I. Neretnieks ◽  
L. Moreno

Open Physics ◽  
2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Yong Zhang ◽  
Donald Reeves ◽  
Karl Pohlmann ◽  
Jenny Chapman ◽  
Charles Russell

AbstractTracer transport through fractured media exhibits concurrent direction-dependent super-diffusive spreading along high-permeability fractures and sub-diffusion caused by mass transfer between fractures and the rock matrix. The resultant complex dynamics challenge the applicability of conventional physical models based on Fick’s law. This study proposes a multi-scaling tempered fractional-derivative (TFD) model to explore fractional dynamics for tracer transport in fractured media. Applications show that the TFD model can capture anomalous transport observed in small-scale single fractures, intermediate-scale fractured aquifers, and two-dimensional large-scale discrete fracture networks. Tracer transport in fractured media from local (0.255-meter long) to regional (400-meter long) scales therefore can be quantified by a general fractional-derivative model. Fractional dynamics in fractured media can be scale dependent, owning to 1) the finite length of fractures that constrains the large displacement of tracers, and 2) the increasing mass exchange capacity along the travel path that enhances sub-diffusion.


2013 ◽  
Vol 10 (1) ◽  
pp. 221-254 ◽  
Author(s):  
C. Cherubini ◽  
C. I. Giasi ◽  
N. Pastore

Abstract. Accurate predictions of solute propagation in fractured rocks are of particular importance when assessing exposure pathways through which contaminants reach receptors during a risk assessment procedure, as well as when dealing with cleanup and monitoring strategies. The difficulty in modeling fractured media leads to the application of simplified analytical solutions that fail to reproduce flow and transport patterns in such complex geological formations. A way for understanding and quantifying the migration of contaminants in groundwater systems is that of analyzing tracer transport. Experimental data obtained under controlled conditions such as in a laboratory allow to increase the understanding of the fundamental physics of fluid flow and solute transport in fractures. In this study laboratory hydraulic and tracer tests have been carried out on an artificially created fractured rock sample. The tests regard the analysis of the hydraulic loss and the measurement of breakthrough curves for saline tracer pulse inside a rock sample of parallelepiped (0.60 × 0.40 × 0.8 m) shape. The effect of the experimental apparatus on flow and transport tests has been estimated. In particular the convolution theory has been applied in order to remove the effect of acquisition apparatus on tracer experiment. The experimental results have shown evidence of a non-Darcy relationship between flow rate and hydraulic loss that is best described by Forchheimer's law. The observed experimental breakthrough curves of solute transport have been modeled by the classical one-dimensional analytical solution for advection–dispersion equation (ADE) and the single rate mobile–immobile model (MIM). The former model does not fit properly the first arrival and the tail while the latter provides a very decent fit.


1996 ◽  
Vol 32 (10) ◽  
pp. 3077-3092 ◽  
Author(s):  
Y. W. Tsang ◽  
C. F. Tsang ◽  
F. V. Hale ◽  
B. Dverstorp

Sign in / Sign up

Export Citation Format

Share Document