scholarly journals Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study

2008 ◽  
Author(s):  
Katie Coughlin ◽  
Charles Goldman
2020 ◽  
Vol 163 (2) ◽  
pp. 1107-1108
Author(s):  
Daniel C. Steinberg ◽  
Bryan K. Mignone ◽  
Jordan Macknick ◽  
Yinong Sun ◽  
Kelly Eurek ◽  
...  

2020 ◽  
Vol 158 (2) ◽  
pp. 125-139 ◽  
Author(s):  
Daniel C. Steinberg ◽  
Bryan K. Mignone ◽  
Jordan Macknick ◽  
Yinong Sun ◽  
Kelly Eurek ◽  
...  

AbstractClimate change may affect the US electricity system through changes in electricity demand, mediated by increases in average surface temperature, and through changes in electricity supply, mediated by changes in both surface temperature and regional water availability. By coupling projections from four general circulation models (GCMs) with a state-of-the-art US electricity system model—the Regional Energy Deployment System (ReEDS)—this study evaluates both the isolated and combined effects of different climate-mediated drivers of US electricity system change through 2050. Comparing results across climate models allows us to evaluate which effects are robust to uncertainty in projected climate outcomes. Comparing effects of different drivers in isolation and in combination allows us to determine the relative contributions of the climate-mediated effects on system evolution. Our results indicate that national-level energy and economic impacts are largely driven by increases in electricity demand that follow from a consistent increase in surface air temperature that is largely robust to the choice of climate model. Other electricity system changes can be equally or more significant in some regions, but these effects are more regionally variable, less significant when aggregated to the national scale, and less robust to the choice of climate model. The findings show that the impacts of climate change on the electricity system can be understood in terms of fewer drivers and with greater certainty at the national level than at the regional level.


2017 ◽  
Author(s):  
Jan Wohland ◽  
Mark Reyers ◽  
Juliane Weber ◽  
Dirk Witthaut

Abstract. Limiting anthropogenic climate change requires the fast decarbonisation of the electricity system. Renewable electricity generation is determined by the weather and is hence subject to climate change. We simulate the operation of a coarse-scale fully-renewable European electricity system based on downscaled high resolution climate data from EURO-CORDEX. Following a high emission pathway (RCP8.5), we find a robust increase of backup needs in Europe until the end of the 21st century. The absolute increase of the backup needs is almost independent of potential grid expansion, leading to the paradoxical effect that relative impacts of climate change increase in a highly interconnected European system. The increase is rooted in more homogeneous wind conditions over Europe resulting in extensive parallel generation shortfalls. Our results are strengthened by comparison with a large CMIP5 ensemble using an approach based on Circulation Weather Types.


2016 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

2014 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

2018 ◽  
Vol 21 (2) ◽  
pp. 52-53
Author(s):  
Colin Tukuitonga

2020 ◽  
Vol 47 (2) ◽  
pp. 312-332
Author(s):  
Hyeon Seok Gong ◽  
Kyeong Soo Jeong ◽  
Min Kyoung Kim ◽  
Jae Bong Chang

Sign in / Sign up

Export Citation Format

Share Document