Crystal Structure Analysis of Great Cormorant (Phalacrocorax carbo) Hemoglobin to Understand its High Oxygen Affinity Characteristics by Special Structural Features

2018 ◽  
Vol 25 (8) ◽  
pp. 748-756
Author(s):  
Jagadeesan Ganapathy ◽  
Malathy Palayam ◽  
Gautam Pennathur ◽  
Aravindhan Sanmargam ◽  
Gunasekaran Krishnasamy
2019 ◽  
Vol 75 (5) ◽  
pp. 589-597 ◽  
Author(s):  
Dinu Alexander ◽  
Kukku Thomas ◽  
Monu Joy ◽  
P. R. Biju ◽  
N. V. Unnikrishnan ◽  
...  

The structural features leading to the intense quenching free luminescence exhibited by europium oxalate nanocrystals, poly[[hexaaquatri-μ2-oxalato-dieuropium] 4.34-hydrate], {[Eu2(C2O4)3(H2O)6]·4.34H2O} n , is the focal point of this report. Europium oxalate nanocrystals were synthesized by a simple microwave-assisted co-precipitation method. Powder X-ray diffraction analysis revealed the monoclinic structure of the nanocrystals and the phase purity. The morphology and particle size were examined by transmission electron microscopy (TEM) analysis. Luminescence measurements on a series of samples of La2–x Eu x (C2O4)3·10H2O, with x varying in the range 0.1 to 2, established the quenching free nature exhibited by the europium oxalate nanocrystals. A single-crystal structure analysis was carried out and the quenching free luminescence is explained on the basis of the crystal structure. A detailed photoluminescence characterization was carried out using excitation and emission studies, decay analysis, and CIE coordinate and colour purity evaluation. The various spectroscopic parameters were evaluated by Judd–Ofelt theoretical analysis and the results are discussed on the basis of the crystal structure analysis.


1996 ◽  
Vol 255 (3) ◽  
pp. 484-493 ◽  
Author(s):  
Jian Zhang ◽  
Ziqian Hua ◽  
Jeremy R.H. Tame ◽  
Guangying Lu ◽  
Renji Zhang ◽  
...  

Author(s):  
M. Bidya Sagar ◽  
K. Ravikumar ◽  
Y. S. Sadanandam

AbstractThe crystallographic characterization of the following three calcium channel antagonists is reported here: 2,6-dimethyl-3,5-dicarbamoyl-4-[2-nitro]-1,4-dihydropyridine (


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 734
Author(s):  
Aija Trimdale ◽  
Anatoly Mishnev ◽  
Agris Bērziņš

The arrangement of hydroxyl groups in the benzene ring has a significant effect on the propensity of dihydroxybenzoic acids (diOHBAs) to form different solid phases when crystallized from solution. All six diOHBAs were categorized into distinctive groups according to the solid phases obtained when crystallized from selected solvents. A combined study using crystal structure and molecule electrostatic potential surface analysis, as well as an exploration of molecular association in solution using spectroscopic methods and molecular dynamics simulations were used to determine the possible mechanism of how the location of the phenolic hydroxyl groups affect the diversity of solid phases formed by the diOHBAs. The crystal structure analysis showed that classical carboxylic acid homodimers and ring-like hydrogen bond motifs consisting of six diOHBA molecules are prominently present in almost all analyzed crystal structures. Both experimental spectroscopic investigations and molecular dynamics simulations indicated that the extent of intramolecular bonding between carboxyl and hydroxyl groups in solution has the most significant impact on the solid phases formed by the diOHBAs. Additionally, the extent of hydrogen bonding with solvent molecules and the mean lifetime of solute–solvent associates formed by diOHBAs and 2-propanol were also investigated.


1999 ◽  
Vol 23 (9) ◽  
pp. 578-579
Author(s):  
Rainer Schobert ◽  
Hermann Pfab ◽  
Jutta Böhmer ◽  
Frank Hampel ◽  
Andreas Werner

Racemates of (η3-allyl)tricarbonyliron lactone complex Fe(CO)3{η1:η3-C(O)XCH2CHCMeCH2} 1a (X = O) and (η3-allyl)tricarbonyliron lactam complex 2a (X = NMe) are resolved on a preparative scale by HPLC on cellulose tris(3,5-dimethylphenyl)carbamate/silica gel RP-8 and the absolute configuration of (-)-2a is determined by X-ray crystal structure analysis.


Sign in / Sign up

Export Citation Format

Share Document