Structural and spectroscopic investigations on the quenching free luminescence of europium oxalate nanocrystals

2019 ◽  
Vol 75 (5) ◽  
pp. 589-597 ◽  
Author(s):  
Dinu Alexander ◽  
Kukku Thomas ◽  
Monu Joy ◽  
P. R. Biju ◽  
N. V. Unnikrishnan ◽  
...  

The structural features leading to the intense quenching free luminescence exhibited by europium oxalate nanocrystals, poly[[hexaaquatri-μ2-oxalato-dieuropium] 4.34-hydrate], {[Eu2(C2O4)3(H2O)6]·4.34H2O} n , is the focal point of this report. Europium oxalate nanocrystals were synthesized by a simple microwave-assisted co-precipitation method. Powder X-ray diffraction analysis revealed the monoclinic structure of the nanocrystals and the phase purity. The morphology and particle size were examined by transmission electron microscopy (TEM) analysis. Luminescence measurements on a series of samples of La2–x Eu x (C2O4)3·10H2O, with x varying in the range 0.1 to 2, established the quenching free nature exhibited by the europium oxalate nanocrystals. A single-crystal structure analysis was carried out and the quenching free luminescence is explained on the basis of the crystal structure. A detailed photoluminescence characterization was carried out using excitation and emission studies, decay analysis, and CIE coordinate and colour purity evaluation. The various spectroscopic parameters were evaluated by Judd–Ofelt theoretical analysis and the results are discussed on the basis of the crystal structure analysis.

2014 ◽  
Vol 798-799 ◽  
pp. 85-89 ◽  
Author(s):  
E.S.G. Junior ◽  
P.M . Jardim

Al2(WO4)3was synthesized by co-precipitation using Na2WO4and Al (NO3)3as precursors. After drying the precipitate, it was calcined at different temperatures between 500°C and 800°C. The crystallization and degradation temperatures of the samples were evaluated by means of Differential Scanning Calorimetry (DSC), Thermogravimetry (TG) and X-Ray Diffraction (XRD). It was observed that the crystallization starts at around 600°C, however Transmission Electron Microscopy (TEM) analysis showed that at this temperature the sample is partially amorphous. The degradation of the material starts at around 1200°C and at 1400°C the tungsten oxide has almost completely evaporated and the material is transformed mainly in alpha-alumina.


Sign in / Sign up

Export Citation Format

Share Document