Current Scenario in Structure and Ligand-Based Drug Design on Anti-colon Cancer Drugs

2019 ◽  
Vol 24 (32) ◽  
pp. 3829-3841 ◽  
Author(s):  
Lakshmanan Loganathan ◽  
Karthikeyan Muthusamy

Worldwide, colorectal cancer takes up the third position in commonly detected cancer and fourth in cancer mortality. Recent progress in molecular modeling studies has led to significant success in drug discovery using structure and ligand-based methods. This study highlights aspects of the anticancer drug design. The structure and ligand-based drug design are discussed to investigate the molecular and quantum mechanics in anti-cancer drugs. Recent advances in anticancer agent identification driven by structural and molecular insights are presented. As a result, the recent advances in the field and the current scenario in drug designing of cancer drugs are discussed. This review provides information on how cancer drugs were formulated and identified using computational power by the drug discovery society.

2020 ◽  
Vol 20 (19) ◽  
pp. 1651-1660
Author(s):  
Anuraj Nayarisseri

Drug discovery is one of the most complicated processes and establishment of a single drug may require multidisciplinary attempts to design efficient and commercially viable drugs. The main purpose of drug design is to identify a chemical compound or inhibitor that can bind to an active site of a specific cavity on a target protein. The traditional drug design methods involved various experimental based approaches including random screening of chemicals found in nature or can be synthesized directly in chemical laboratories. Except for the long cycle design and time, high cost is also the major issue of concern. Modernized computer-based algorithm including structure-based drug design has accelerated the drug design and discovery process adequately. Surprisingly from the past decade remarkable progress has been made concerned with all area of drug design and discovery. CADD (Computer Aided Drug Designing) based tools shorten the conventional cycle size and also generate chemically more stable and worthy compounds and hence reduce the drug discovery cost. This special edition of editorial comprises the combination of seven research and review articles set emphasis especially on the computational approaches along with the experimental approaches using a chemical synthesizing for the binding affinity in chemical biology and discovery as a salient used in de-novo drug designing. This set of articles exfoliates the role that systems biology and the evaluation of ligand affinity in drug design and discovery for the future.


2021 ◽  
Vol 219 (1) ◽  
Author(s):  
Li Wang ◽  
Michael A. Crackower ◽  
Hao Wu

Inflammasome proteins play an important role in many diseases of high unmet need, making them attractive drug targets. However, drug discovery for inflammasome proteins has been challenging in part due to the difficulty in solving high-resolution structures using cryo-EM or crystallography. Recent advances in the structural biology of NLRP3 and NLRP1 have provided the first set of data that proves a promise for structure-based drug design for this important family of targets.


Toxins ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 765
Author(s):  
Monika Urbaniak ◽  
Agnieszka Waśkiewicz ◽  
Łukasz Stępień

Most of the fungi from the Fusarium genus are pathogenic to cereals, vegetables, and fruits and the products of their secondary metabolism mycotoxins may accumulate in foods and feeds. Non-ribosomal cyclodepsipeptides are one of the main mycotoxin groups and include beauvericins (BEAs), enniatins (ENNs), and beauvenniatins (BEAEs). When ingested, even small amounts of these metabolites significantly affect human and animal health. On the other hand, in view of their antimicrobial activities and cytotoxicity, they may be used as components in drug discovery and processing and are considered as suitable candidates for anti-cancer drugs. Therefore, it is crucial to expand the existing knowledge about cyclodepsipeptides and to search for new analogues of these compounds. The present manuscript aimed to highlight the extensive variability of cyclodepsipeptides by describing chemistry, biosynthesis, and occurrence of BEAs, ENNs, and BEAEs in foods and feeds. Moreover, the co-occurrence of Fusarium species was compared to the amounts of toxins in crops, vegetables, and fruits from different regions of the world.


2018 ◽  
Vol 14 ◽  
pp. 772-785 ◽  
Author(s):  
Kartik Temburnikar ◽  
Katherine L Seley-Radtke

C-nucleosides have intrigued biologists and medicinal chemists since their discovery in 1950's. In that regard, C-nucleosides and their synthetic analogues have resulted in promising leads in drug design. Concurrently, advances in chemical syntheses have contributed to structural diversity and drug discovery efforts. Convergent and modular approaches to synthesis have garnered much attention in this regard. Among them nucleophilic substitution at C1' has seen wide applications providing flexibility in synthesis, good yields, the ability to maneuver stereochemistry as well as to incorporate structural modifications. In this review, we describe recent reports on the modular synthesis of C-nucleosides with a focus on D-ribonolactone and sugar modifications that have resulted in potent lead molecules.


2014 ◽  
Vol 14 (16) ◽  
pp. 1875-1889 ◽  
Author(s):  
Prema Mallipeddi ◽  
Gyanendra Kumar ◽  
Stephen White ◽  
Thomas Webb

2016 ◽  
Vol 23 (8) ◽  
pp. 792-815 ◽  
Author(s):  
Marisa Cabeza ◽  
Araceli Sánchez-Márquez ◽  
Mariana Garrido ◽  
Aylín Silva ◽  
Eugene Bratoeff

2007 ◽  
Vol 13 (34) ◽  
pp. 3505-3517 ◽  
Author(s):  
R. Reddy ◽  
Ravichandra Mutyala ◽  
P. Aparoy ◽  
P. Reddanna ◽  
M. Reddy

Sign in / Sign up

Export Citation Format

Share Document