An Overview of the Chemistry and Pharmacological Potentials of Furanones Skeletons

2019 ◽  
Vol 23 (14) ◽  
pp. 1581-1599 ◽  
Author(s):  
Zahra Hosseinzadeh ◽  
Ali Ramazani

The furanone structure, a significant group of heterocyclic compounds, is frequently found in natural products that are exhibiting striking pharmacological effects and a growing field of research. They have a wide spectrum of pharmaceutical activity: anticataract, anticancer, antibacterial, anti-inflammatory, anticonvulsant. This review article presents a summary of natural furanones, synthetic methods, and the biological effects of these important compounds. Solid-phase method, cross-coupling reactions, Maillard-type reaction, the cycloaddition of alcohol and phenyl nitrile oxide, and side-chain modifications are some types of reactions for the preparation of furanone derivatives. Methods of preparation and pharmacological activities of furanone skeletons that are discussed in this review article will help the medicinal chemists to design and execute novel procedures towards finding new drugs.

2004 ◽  
Vol 45 (29) ◽  
pp. 5661-5663 ◽  
Author(s):  
Stephan A. Ohnmacht ◽  
Tim Brenstrum ◽  
Konrad H. Bleicher ◽  
James McNulty ◽  
Alfredo Capretta

2004 ◽  
Vol 87 (3) ◽  
pp. 698-718 ◽  
Author(s):  
Nils F. Utesch ◽  
François Diederich ◽  
Corinne Boudon ◽  
Jean-Paul Gisselbrecht ◽  
Maurice Gross

2021 ◽  
Author(s):  
Ming Chen ◽  
Zheng-Jian Wu ◽  
Jinshuai Song ◽  
Hai-Chao Xu

Transition metal-catalyzed allylic substitution reactions of pre-activated allylation agents with nucleophiles are extensively studied synthetic methods that have enjoyed widespread applications in organic synthesis. The direct alkylation of allylic C–H bonds with nucleophiles, which minimizes pre-functionalization and converts inexpensive, abundantly available materials to value-added alkenyl-substituted products, remains challenging. Current methods generally involve C–H activation, require the use of noble-metal catalysts and stoichiometric chemical oxidants, and often show limited scope. Here we report an electrocatalytic allylic C–H alkylation reaction with carbon nucleophiles employing an easily available cobalt-salen complex as the molecular catalyst. These C(sp3)–H/C(sp3)–H cross-coupling reactions proceed through H2 evolution and require no external chemical oxidants. Importantly, the mild conditions and radical mechanism ensure excellent functional group tolerance and substrate compatibility with both linear and branched terminal alkenes. The synthetic utility of the electrochemical method is highlighted by its scalability (up to 200 mmol scale) and its successful application in the late-stage functionalization of complex structures.


2012 ◽  
Vol 65 (9) ◽  
pp. 1277 ◽  
Author(s):  
Masaki Shimizu ◽  
Ikuhiro Nagao ◽  
Shin-ichi Kiyomoto ◽  
Tamejiro Hiyama

Palladium-catalyzed double cross-coupling reactions of 1,1-bis(pinacolato)borylalk-1-enes with 2,2′-dibromobiaryls and of 9-stannafluorenes with 1,1-dibromoalk-1-enes have been demonstrated to serve as new synthetic methods for dibenzofulvenes.


2021 ◽  
Vol 18 ◽  
Author(s):  
Isabela A. Graciano ◽  
Alcione S. de Carvalho ◽  
Fernando de Carvalho da Silva ◽  
Vitor F. Ferreira

Background: Malaria is a disease causing millions of victims every year and requires new drugs, often due to parasitic strain mutations. Thus, the search for new molecules that possess antimalarial activity is constant and extremely important. However, the potential that an antimalarial drug possesses cannot be ignored, and molecular hybridization is a good strategy to design new chemical entities. Objective: This review article aims to emphasize recent advances in the biological activities of new 1,2,3-triazole- and quinoline-based hybrids and their place in the development of new biologically active substances. More specifically, it intends to present the synthetic methods that have been utilized for the syntheses of hybrid 1,2,3-triazoles with quinoline nuclei. Method: We have comprehensively and critically discussed all the information available in the literature regarding 1,2,3-triazole- and quinoline-based hybrids with potent antiplasmodial activity. Results: The quinoline nucleus has already been proven to lead to new chemical entities in the pharmaceutical market, such as drugs for the treatment of malaria and other diseases. The same can be said about the 1,2,3-triazole heterocycle, which has been shown to be a beneficial scaffold for the construction of new drugs with several activities. However, only a few triazoles have entered the pharmaceutical market as drugs. Conclusion: Many studies have been conducted to develop new substances that may circumvent the resistance developed by the parasite that causes malaria, thereby improving the therapy currently used.


Sign in / Sign up

Export Citation Format

Share Document