Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Chemical Mechanisms, Structure-Activity Relationships and Relationship to Clinical Drug-Drug Interactions and Idiosyncratic Adverse Drug Reactions

2007 ◽  
Vol 8 (5) ◽  
pp. 407-447 ◽  
Author(s):  
Amit S. Kalgutkar ◽  
R. Scott Obach ◽  
Tristan S. Maurer
2019 ◽  
Vol 18 (23) ◽  
pp. 2042-2055 ◽  
Author(s):  
Neeraj Kumar ◽  
Heerak Chugh ◽  
Damini Sood ◽  
Snigdha Singh ◽  
Aarushi Singh ◽  
...  

Heme is central to functions of many biologically important enzymes (hemoproteins). It is an assembly of four porphyrin rings joined through methylene bridges with a central Fe (II). Heme is present in all cells, and its synthesis and degradation balance its amount in the cell. The deregulations of heme networks and incorporation in hemoproteins lead to pathogenic state. This article addresses the detailed structure, biosynthesis, degradation, and transportation associated afflictions to heme. The article is followed by its roles in various diseased conditions where it is produced mainly as the cause of increased hemolysis. It manifests the symptoms in diseases as it is a pro-oxidant, pro-inflammatory and pro-hemolytic agent. We have also discussed the genetic defects that tampered with the biosynthesis, degradation, and transportation of heme. In addition, a brief about the largest hemoprotein group of enzymes- Cytochrome P450 (CYP450) has been discussed with its roles in drug metabolism.


2012 ◽  
Vol 69 (4) ◽  
pp. 885-888 ◽  
Author(s):  
Anne Charlotte Danton ◽  
François Montastruc ◽  
Agnès Sommet ◽  
Geneviève Durrieu ◽  
Haleh Bagheri ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6480
Author(s):  
Céline K. Stäuble ◽  
Markus L. Lampert ◽  
Thorsten Mikoteit ◽  
Martin Hatzinger ◽  
Kurt E. Hersberger ◽  
...  

We report two cases of patients who developed severe adverse drug reactions including persistent movement disorders, nausea, and vertigo during treatment with quetiapine at maximum daily doses ranging between 300 and 400 mg. The extensive hepatic metabolism of quetiapine is mainly attributed to cytochrome P450 3A4 (CYP3A4). However, there is recent evidence supporting the idea of CYP2D6 playing a role in the clearance of the quetiapine active metabolite norquetiapine. Interestingly, both patients we are reporting of are carriers of the CYP2D6*4 variant, predicting an intermediate metabolizer phenotype. Additionally, co-medication with a known CYP2D6 inhibitor and renal impairment might have further affected quetiapine pharmacokinetics. The herein reported cases could spark a discussion on the potential impact of a patient’s pharmacogenetic predisposition in the treatment with quetiapine. However, further studies are warranted to promote the adoption of pharmacogenetic testing for the prevention of drug-induced toxicities associated with quetiapine.


2020 ◽  
Vol 67 (4) ◽  
pp. S69-S78
Author(s):  
Amitesh Gupta ◽  
Vikas Kumar ◽  
Sekar Natarajan ◽  
Rupak Singla

Sign in / Sign up

Export Citation Format

Share Document